Search code examples
scalaapache-sparkhiveparquet

Creating hive table using parquet file metadata


I wrote a DataFrame as parquet file. And, I would like to read the file using Hive using the metadata from parquet.

Output from writing parquet write

_common_metadata  part-r-00000-0def6ca1-0f54-4c53-b402-662944aa0be9.gz.parquet  part-r-00002-0def6ca1-0f54-4c53-b402-662944aa0be9.gz.parquet  _SUCCESS
_metadata         part-r-00001-0def6ca1-0f54-4c53-b402-662944aa0be9.gz.parquet  part-r-00003-0def6ca1-0f54-4c53-b402-662944aa0be9.gz.parquet

Hive table

CREATE  TABLE testhive
ROW FORMAT SERDE
  'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
  '/home/gz_files/result';



FAILED: SemanticException [Error 10043]: Either list of columns or a custom serializer should be specified

How can I infer the meta data from parquet file?

If I open the _common_metadata I have below content,

PAR1LHroot
%TSN%
%TS%
%Etype%
)org.apache.spark.sql.parquet.row.metadata▒{"type":"struct","fields":[{"name":"TSN","type":"string","nullable":true,"metadata":{}},{"name":"TS","type":"string","nullable":true,"metadata":{}},{"name":"Etype","type":"string","nullable":true,"metadata":{}}]}

Or how to parse meta data file?


Solution

  • Here's a solution I've come up with to get the metadata from parquet files in order to create a Hive table.

    First start a spark-shell (Or compile it all into a Jar and run it with spark-submit, but the shell is SOO much easier)

    import org.apache.spark.sql.hive.HiveContext
    import org.apache.spark.sql.DataFrame
    
    
    val df=sqlContext.parquetFile("/path/to/_common_metadata")
    
    def creatingTableDDL(tableName:String, df:DataFrame): String={
      val cols = df.dtypes
      var ddl1 = "CREATE EXTERNAL TABLE "+tableName + " ("
      //looks at the datatypes and columns names and puts them into a string
      val colCreate = (for (c <-cols) yield(c._1+" "+c._2.replace("Type",""))).mkString(", ")
      ddl1 += colCreate + ") STORED AS PARQUET LOCATION '/wherever/you/store/the/data/'"
      ddl1
    }
    
    val test_tableDDL=creatingTableDDL("test_table",df,"test_db")
    

    It will provide you with the datatypes that Hive will use for each column as they are stored in Parquet. E.G: CREATE EXTERNAL TABLE test_table (COL1 Decimal(38,10), COL2 String, COL3 Timestamp) STORED AS PARQUET LOCATION '/path/to/parquet/files'