I'm new to Mathematica, and I'm trying to solve a matrix equation in a form as
AX = \lambda BX
Here, A
and B
are 4*4
matrices in the following, \lambda
is a value, X
is the eigenvector- 4*1
matrix.
A = {{a1 + b1, c, d, f},
{c, a2 + b2 , f , e},
{d , f , a3 + b1 , c},
{ f, e , c, a4 + b2}}
B = {{1, 0, 0 , 0},
{0, 1 , 0 , 0},
{0 , 0 , -1 , 0},
{0, 0 , 0, -1}}
I would like to solve this matrix equation and get the symbolical solution for \lambda
using a1,a2,a3,a4,b1,b2,c,d,e,f
, etc.
It would be much grateful if anyone can tell me.
Best regards,
mike
See Wolfram: Matrix Computations - specifically the section 'Generalized Eigenvalues'.
For n×n matrices A, B the generalized eigenvalues are the n roots of its characteristic polynomial, p(𝛇) = det(A - 𝛇 B). For each generalized eigenvalue, λ ∊ λ(A, B), the vectors, 𝛇, that satisfy
A χ = λ B χ
are described as generalized eigenvectors.
Example using symbolic values:
matA = {{a11, a12}, {a21, a22}};
matB = {{b11, b12}, {b21, b22}};
Eigenvalues[{matA, matB}]
{(1/(2 (-b12 b21+b11 b22)))(a22 b11-a21 b12-a12 b21+a11 b22-Sqrt[(-a22 b11+a21 b12+a12 b21-a11 b22)^2-4 (-a12 a21+a11 a22) (-b12 b21+b11 b22)]),(1/(2 (-b12 b21+b11 b22)))(a22 b11-a21 b12-a12 b21+a11 b22+Sqrt[(-a22 b11+a21 b12+a12 b21-a11 b22)^2-4 (-a12 a21+a11 a22) (-b12 b21+b11 b22)])}
Eigenvectors[{matA, matB}]
...