I am working with an NxN
regular network and I want to plot its edge length distribution.
This is how I generate the network:
import networkx as nx
import matplotlib.pyplot as plt
N=30 #This can be changed
G=nx.grid_2d_graph(N,N)
pos = dict( (n, n) for n in G.nodes() )
labels = dict( ((i, j), i + (N-1-j) * N ) for i, j in G.nodes() )
nx.relabel_nodes(G,labels,False)
inds=labels.keys()
vals=labels.values()
inds.sort()
vals.sort()
pos2=dict(zip(vals,inds))
nx.draw_networkx(G, pos=pos2, with_labels=False, node_size = 15)
This is how I compute the edge length distribution:
def plot_edge_length_distribution(): #Euclidean distances from all nodes
lengths={}
for node in G.nodes():
neigh=nx.all_neighbors(G,node) #The connected neighbors of node n
for n in neigh:
lengths[node]=((pos2[n][1]-pos2[node][1])**2)+((pos2[n][0]-pos2[node][0])**2) #The square distance
items=sorted(lengths.items())
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot([k for (k,v) in items],[v/(num_edges) for (k,v) in items],'ks-')
ax.set_xscale("linear")
ax.set_yscale("linear")
plt.yticks(numpy.arange(0.94, 1.00, 0.02))
title_string=('Edge Length Distribution')
subtitle_string=('Lattice Network | '+str(N)+'x'+str(N)+' nodes')
plt.suptitle(title_string, y=0.99, fontsize=17)
plt.title(subtitle_string, fontsize=9)
plt.xlabel('Edge Length L')
plt.ylabel('p(L)')
ax.grid(True,which="both")
plt.show()
plot_edge_length_distribution()
This is what I obtain: there is something wrong as the dict lengths
should contain only ones as values, due to the nature of the regular grid.
This is what I want: a plot telling me that length=1 has a probability p(l)=1 because the regular grid only features edges of length 1. What is wrong in my code?
It's easier and faster to iterate over the edges and compute the distance on each one:
In [1]: import networkx as nx
In [2]: from math import sqrt
In [3]: from collections import Counter
In [4]: G = nx.grid_2d_graph(100,100)
In [5]: d = Counter(sqrt((x-a)**2 + (y-b)**2) for (x,y),(a,b) in G.edges())
In [6]: print(d)
Counter({1.0: 19800})