I have a dataset with the dimensions (878049, 6)
.
It looks like this:
I would like to extract association rules that link the category column with the other columns. Thus, from the documentation I tried the following with Orange-Associate:
In:
import Orange
data = Orange.data.Table("data.csv")
In:
data.domain.attributes
Out:
(DiscreteVariable('Category', values=['ARSON', 'ASSAULT', 'BAD CHECKS', 'BRIBERY', 'BURGLARY', ...]),
DiscreteVariable('Descript', values=['ABANDONMENT OF CHILD', 'ABORTION', 'ACCESS CARD INFORMATION, PUBLICATION OF', 'ACCESS CARD INFORMATION, THEFT OF', 'ACCIDENTAL BURNS', ...]),
DiscreteVariable('DayOfWeek', values=['Friday', 'Monday', 'Saturday', 'Sunday', 'Thursday', ...]),
DiscreteVariable('PdDistrict', values=['BAYVIEW', 'CENTRAL', 'INGLESIDE', 'MISSION', 'NORTHERN', ...]),
DiscreteVariable('Resolution', values=['ARREST, BOOKED', 'ARREST, CITED', 'CLEARED-CONTACT JUVENILE FOR MORE INFO', 'COMPLAINANT REFUSES TO PROSECUTE', 'DISTRICT ATTORNEY REFUSES TO PROSECUTE', ...]))
In:
from orangecontrib.associate.fpgrowth import *
X, mapping = OneHot.encode(data, include_class=True)
X
Out:
array([[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
...,
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False],
[False, False, False, ..., False, False, False]], dtype=bool)
In:
sorted(mapping.items())
Out:
[(0, (0, 0)),
(1, (0, 1)),
(2, (0, 2)),
(3, (0, 3)),
(4, (0, 4)),
(5, (0, 5)),
(6, (0, 6)),
(7, (0, 7)),
....
(950, (4, 15)),
(951, (4, 16))]
Then:
In:
itemsets = dict(frequent_itemsets(X, .4))
len(itemsets)
Out:
1
In:
class_items = {item
for item, var, _ in OneHot.decode(mapping, data, mapping)
if var is data.domain.class_var}
In:
sorted(class_items)
Out:
[]
I believe that the problem is that I did not yield correctly the Orange table. Thus, How should I load the dataset with orange in order to generate association rules?.
update
By @K3---rnc answer I tried this:
itemsets = dict(frequent_itemsets(X, .1))
print (len(itemsets))
print( itemsets)
for itemset, _support in itemsets:
print(' '.join('{}={}'.format(var.name, val)
for _, var, val in OneHot.decode(itemset, data, mapping)))
18
{frozenset({935}): 206403, frozenset({20}): 92304, frozenset({928}): 119908, frozenset({924}): 129211, frozenset({946}): 526790, frozenset({921}): 116707, frozenset({946, 932}): 93924, frozenset({919}): 121584, frozenset({932}): 157182, frozenset({21}): 126182, frozenset({922}): 125038, frozenset({16}): 174900, frozenset({929}): 105296, frozenset({918}): 133734, frozenset({16, 946}): 156586, frozenset({925}): 89431, frozenset({923}): 124965, frozenset({920}): 126810}
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-83-83a24c082126> in <module>()
2 print (len(itemsets))
3 print( itemsets)
----> 4 for itemset, _support in itemsets:
5 print(' '.join('{}={}'.format(var.name, val)
6 for _, var, val in OneHot.decode(itemset, data, mapping)))
ValueError: not enough values to unpack (expected 2, got 1)
However, I still with the same issues... I can not extract the association rules.
You are trying to induce classification rules without having any class variable in your data domain. If you print data.domain
, you will see you only have regular attributes and metas.
[Category, DayOfWeek, PdDistrict, Resolution] {Descript, Address}
To solve this, you need to set one of your attributes as a class variable.
new_domain = Orange.data.Domain(list(data.domain.attributes[1:]),
data.domain.attributes[0],
metas=data.domain.metas)
This will set 'Category' attribute as a class variable. Of course you can set your own class variable by the above example. If you now print new_domain, you should see something like this:
[DayOfWeek, PdDistrict, Resolution | Category] {Descript, Address}