I have a dataframe:
a b c
0 1 2 3
1 1 1 1
2 3 7 NaN
3 2 3 5
...
I want to fill column "three" inplace (update the values) where the values are NaN using a machine learning algorithm.
I don't know how to do it inplace. Sample code:
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
df=pd.DataFrame([range(3), [1, 5, np.NaN], [2, 2, np.NaN], [4,5,9], [2,5,7]],columns=['a','b','c'])
x=[]
y=[]
for row in df.iterrows():
index,data = row
if(not pd.isnull(data['c'])):
x.append(data[['a','b']].tolist())
y.append(data['c'])
model = LinearRegression()
model.fit(x,y)
#this line does not do it in place.
df[~df.c.notnull()].assign(c = lambda x:model.predict(x[['a','b']]))
But this gives me a copy of the dataframe. Only option I have left is using a for loop however, I don't want to do that. I think there should be more pythonic way of doing it using pandas. Can someone please help? Or is there any other way of doing this?
You'll have to do something like :
df.loc[pd.isnull(df['three']), 'three'] = _result of model_
This modifies directly dataframe df
This way you first filter the dataframe to keep the slice you want to modify (pd.isnull(df['three'])
), then from that slice you select the column you want to modify (three
).
On the right hand side of the equal, it expects to get an array / list / series with the same number of lines than the filtered dataframe ( in your example, one line)
You may have to adjust depending on what your model returns exactly
EDIT
You probably need to do stg like this
pred = model.predict(df[['a', 'b']])
df['pred'] = model.predict(df[['a', 'b']])
df.loc[pd.isnull(df['c']), 'c'] = df.loc[pd.isnull(df['c']), 'pred']
Note that a significant part of the issue comes from the way you are using scikit learn in your example. You need to pass the whole dataset to the model when you predict.