I am using dataset to see the relationship between salary and college GPA. I am using sklearn linear regression model. I think the coefficients should be intercept and the coff. value of corresponding feature. But the model is giving a single value.
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LinearRegression
# Use only one feature : CollegeGPA
labour_data_gpa = labour_data[['collegeGPA']]
# salary as a dependent variable
labour_data_salary = labour_data[['Salary']]
# Split the data into training/testing sets
gpa_train, gpa_test, salary_train, salary_test = train_test_split(labour_data_gpa, labour_data_salary)
# Create linear regression object
regression = LinearRegression()
# Train the model using the training sets (first parameter is x )
regression.fit(gpa_train, salary_train)
#coefficients
regression.coef_
The output is : Out[12]: array([[ 3235.66359637]])
Try:
regression = LinearRegression(fit_intercept =True)
regression.fit(gpa_train, salary_train)
and the results will be in
regression.coef_
regression.intercept_
In order to get a better understanding of your linear regression, you maybe should consider another module, the following tutorial helps: http://statsmodels.sourceforge.net/devel/examples/notebooks/generated/ols.html