Search code examples
image-processingcomputer-visionsift

SIFT parabola fitting of histogram


I am implementing Lowe's method, "SIFT", for finding and describing features in an image.

I have found interest points, and now I have to describe them: Using Lowe's method, I have calculated the magnitude and gradient in an area around the keypoint, and created a Gauss weighted histogram, with 36 bins, each corresponding to an orientation of 10 degrees. For each keypoint, there is a histogram. Each bin is the sum of the weighted magnitude, in that direction. An example taken from aishack.in: http://www.aishack.in/static/img/tut/sift-orientation-histogram.jpg

Bins within 80% the size of the maximum bin, is made a new keypoint. After describing, it says in the paper: "Finally, a parabola is fit to the 3 histogram values closest to each peak to interpolate the peak position for better accuracy". I am not sure i get this.

In my understanding, it means the peak, the left, and the right value of that peak, will have a parabola fit, like this(be warned! Drawn free hand)

https://i.sstatic.net/7V8pb.jpg

and the orientation of the keypoint will be where the extremum of the parabola is. For instance: If the parabola fitted at 10-19, 20-29, and 30-39 (with 20-29 being the histogram peak), had extremum at a point, that reached in the 30-39, then this would be the orientation of that keypoint. Am i understanding this correctly? In this way, the orientation of the keypoint, can only be within 36 orientations

Another option: Same idea as above, only the histogram is no longer discrete: the extremum of the parapola will thus be a continuous value, and this value is assigned to the keypoint.


Solution

  • The idea of the parabola fitting is to find the peak with better than bin resolution. As you see in your example, the peak is at 20-29 (average 24.5) but the 10-19 bin is higher than the 30-39 bin. It's therefore likely that the precise peak should be below 24.5.

    You can't have a non-discrete histogram, that defeats the point of a histogram. What you can have is overlapping bins: create a bin for 20-29, but also a bin for 21-30 and 22-31 etc. So the value 24 would map to 10 bins, from 15-24 to 24-35.

    And when you increment a bin, you don't necessarily need to increment it by 1. You can also increment a bin by a variable amount, e.g. the distance from the given value to the edge of the bin. So 24 would add 1 to bin 16-25 but 4 to bin 20-29.