Search code examples
c++11race-conditionmemory-barriersthread-sanitizer

Why does ThreadSanitizer report a race with this lock-free example?


I've boiled this down to a simple self-contained example. The main thread enqueues 1000 items, and a worker thread tries to dequeue concurrently. ThreadSanitizer complains that there's a race between the read and the write of one of the elements, even though there is an acquire-release memory barrier sequence protecting them.

#include <atomic>
#include <thread>
#include <cassert>

struct FakeQueue
{
    int items[1000];
    std::atomic<int> m_enqueueIndex;
    int m_dequeueIndex;

    FakeQueue() : m_enqueueIndex(0), m_dequeueIndex(0) { }

    void enqueue(int x)
    {
        auto tail = m_enqueueIndex.load(std::memory_order_relaxed);
        items[tail] = x;              // <- element written
        m_enqueueIndex.store(tail + 1, std::memory_order_release);
    }

    bool try_dequeue(int& x)
    {
        auto tail = m_enqueueIndex.load(std::memory_order_acquire);
        assert(tail >= m_dequeueIndex);
        if (tail == m_dequeueIndex)
            return false;
        x = items[m_dequeueIndex];    // <- element read -- tsan says race!
        ++m_dequeueIndex;
        return true;
    }
};


FakeQueue q;

int main()
{
    std::thread th([&]() {
        int x;
        for (int i = 0; i != 1000; ++i)
            q.try_dequeue(x);
    });

    for (int i = 0; i != 1000; ++i)
        q.enqueue(i);

    th.join();
}

ThreadSanitizer output:

==================
WARNING: ThreadSanitizer: data race (pid=17220)
  Read of size 4 at 0x0000006051c0 by thread T1:
    #0 FakeQueue::try_dequeue(int&) /home/cameron/projects/concurrentqueue/tests/tsan/issue49.cpp:26 (issue49+0x000000402bcd)
    #1 main::{lambda()#1}::operator()() const <null> (issue49+0x000000401132)
    #2 _M_invoke<> /usr/include/c++/5.3.1/functional:1531 (issue49+0x0000004025e3)
    #3 operator() /usr/include/c++/5.3.1/functional:1520 (issue49+0x0000004024ed)
    #4 _M_run /usr/include/c++/5.3.1/thread:115 (issue49+0x00000040244d)
    #5 <null> <null> (libstdc++.so.6+0x0000000b8f2f)

  Previous write of size 4 at 0x0000006051c0 by main thread:
    #0 FakeQueue::enqueue(int) /home/cameron/projects/concurrentqueue/tests/tsan/issue49.cpp:16 (issue49+0x000000402a90)
    #1 main /home/cameron/projects/concurrentqueue/tests/tsan/issue49.cpp:44 (issue49+0x000000401187)

  Location is global 'q' of size 4008 at 0x0000006051c0 (issue49+0x0000006051c0)

  Thread T1 (tid=17222, running) created by main thread at:
    #0 pthread_create <null> (libtsan.so.0+0x000000027a67)
    #1 std::thread::_M_start_thread(std::shared_ptr<std::thread::_Impl_base>, void (*)()) <null> (libstdc++.so.6+0x0000000b9072)
    #2 main /home/cameron/projects/concurrentqueue/tests/tsan/issue49.cpp:41 (issue49+0x000000401168)

SUMMARY: ThreadSanitizer: data race /home/cameron/projects/concurrentqueue/tests/tsan/issue49.cpp:26 FakeQueue::try_dequeue(int&)
==================
ThreadSanitizer: reported 1 warnings

Command line:

g++ -std=c++11 -O0 -g -fsanitize=thread issue49.cpp -o issue49 -pthread

g++ version: 5.3.1

Can anybody shed some light onto why tsan thinks this is a data race?


UPDATE

It seems like this is a false positive. To appease ThreadSanitizer, I've added annotations (see here for the supported ones and here for an example). Note that detecting whether tsan is enabled in GCC via a macro has only recently been added, so I had to manually pass -D__SANITIZE_THREAD__ to g++ for now.

#if defined(__SANITIZE_THREAD__)
#define TSAN_ENABLED
#elif defined(__has_feature)
#if __has_feature(thread_sanitizer)
#define TSAN_ENABLED
#endif
#endif

#ifdef TSAN_ENABLED
#define TSAN_ANNOTATE_HAPPENS_BEFORE(addr) \
    AnnotateHappensBefore(__FILE__, __LINE__, (void*)(addr))
#define TSAN_ANNOTATE_HAPPENS_AFTER(addr) \
    AnnotateHappensAfter(__FILE__, __LINE__, (void*)(addr))
extern "C" void AnnotateHappensBefore(const char* f, int l, void* addr);
extern "C" void AnnotateHappensAfter(const char* f, int l, void* addr);
#else
#define TSAN_ANNOTATE_HAPPENS_BEFORE(addr)
#define TSAN_ANNOTATE_HAPPENS_AFTER(addr)
#endif

struct FakeQueue
{
    int items[1000];
    std::atomic<int> m_enqueueIndex;
    int m_dequeueIndex;

    FakeQueue() : m_enqueueIndex(0), m_dequeueIndex(0) { }

    void enqueue(int x)
    {
        auto tail = m_enqueueIndex.load(std::memory_order_relaxed);
        items[tail] = x;
        TSAN_ANNOTATE_HAPPENS_BEFORE(&items[tail]);
        m_enqueueIndex.store(tail + 1, std::memory_order_release);
    }

    bool try_dequeue(int& x)
    {
        auto tail = m_enqueueIndex.load(std::memory_order_acquire);
        assert(tail >= m_dequeueIndex);
        if (tail == m_dequeueIndex)
            return false;
        TSAN_ANNOTATE_HAPPENS_AFTER(&items[m_dequeueIndex]);
        x = items[m_dequeueIndex];
        ++m_dequeueIndex;
        return true;
    }
};

// main() is as before

Now ThreadSanitizer is happy at runtime.


Solution

  • The ThreadSanitizer is not good at counting, it cannot understand that writes to the items always happen before the reads.

    The ThreadSanitizer can find that the stores of m_enqueueIndex happen before the loads, but it does not understand that the store to items[m_dequeueIndex] must happen before the load when tail > m_dequeueIndex.