I am testing the library just using a discrete cosine transform.
#include <fftw3.h>
void dump_vector(int n, double* vec) {
for(int i = 0; i < n; i++)
printf("%f ", vec[i]);
printf("\n");
}
int main()
{
double a[] = {0.5, 0.6, 0.7, 0.8};
double b[] = {0, 0, 0, 0};
printf("Original vector\n");
dump_vector(4, a);
fftw_plan plan = fftw_plan_r2r_1d(4, a, a, FFTW_REDFT10, FFTW_ESTIMATE);
fftw_execute(plan);
printf("DCT\n");
dump_vector(4, a);
fftw_plan plani = fftw_plan_r2r_1d(4, a, a, FFTW_REDFT10, FFTW_ESTIMATE);
fftw_execute(plani);
printf("IDCT\n");
dump_vector(4, a);
return 0;
}
I hope to obtain the same a
, or maybe an approximation, but my ouput is the following:
Original vector
0.500000 0.600000 0.700000 0.800000
DCT
5.200000 -0.630864 0.000000 -0.044834
IDCT
9.048603 9.208347 8.182682 5.179908
See the documentation of fftw about real to real transforms
FFTW_REDFT10 computes an REDFT10 transform, i.e. a DCT-II (sometimes called “the” DCT). (Logical N=2*n, inverse is FFTW_REDFT01.)
Hence, the flag FFTW_REDFT01
must be used for the inverse transform instead of FFTW_REDFT10
.
Moreover, FFTW does not rescale the output of the transform. Consequently, the ouput must be divised by either n
or n*n
, where n
is the length of the vector. (I will test it in a couple of minutes...)
EDIT: the scaling factor is neither n
nor n*n
it's 2*n
...