Given a DataFrame (d
) with MultiIndex columns, I would like to set another DataFrame (d2
) as one of the 'multicolumns', such that the top level has some label, and the second level labels match those of the original:
nr.seed(0)
abc = ['a', 'b', 'c']
mi = pd.MultiIndex.from_product([['A'], abc])
d = DataFrame(np.random.randint(0, 10, (4, 3)), columns=mi)
d
A
a b c
0 5 0 3
1 3 7 9
2 3 5 2
3 4 7 6
d2 = DataFrame(np.random.randint(0, 10, (4, 3)), columns=abc)
d2
a b c
0 8 8 1
1 6 7 7
2 8 1 5
3 9 8 9
If possible, I would like to join them using a single builtin method that accomplishes the following forloop:
for c2 in d2:
d['B', c2] = d2[c2]
d
A B
a b c a b c
0 5 0 3 8 8 1
1 3 7 9 6 7 7
2 3 5 2 8 1 5
3 4 7 6 9 8 9
For a DataFrame with a single-level column:
d3 = d.copy()
d3.columns = d3.columns.droplevel(0)
d3 = d3.rename(columns=dict(zip('abc', 'def')))
d3
d e f
0 5 0 3
1 3 7 9
2 3 5 2
3 4 7 6
I can do the following:
d3[d2.columns] = d2
d3
d e f a b c
0 5 0 3 8 8 1
1 3 7 9 6 7 7
2 3 5 2 8 1 5
3 4 7 6 9 8 9
But when I try this with the MultiIndexed DataFrame, I get errors:
d['B', tuple(d2.columns)] = d2
=> ValueError: Wrong number of items passed 3, placement implies 1
d['B'][tuple(d2.columns)] = d2
=> KeyError: 'B'
Is there a builtin method to do this? (Basically do this for multiple columns at once).
UPDATE:
def add_multicolumn(df, df2, new_col_name):
tmp = df2.copy() # make copy, otherwise df2 will be changed !!!
tmp.columns = pd.MultiIndex.from_product([[new_col_name], df2.columns.tolist()])
return pd.concat([df, tmp], axis=1)
assuming that we have the following DF and we want to add a third 'multicolumn' - C
:
In [114]: d
Out[114]:
A B
a b c a b c
0 5 5 7 0 7 2
1 5 3 9 0 5 5
2 5 8 5 5 5 7
3 5 4 5 4 5 2
using our function:
In [132]: add_multicolumn(d, d2, 'C')
Out[132]:
A B C
a b c a b c a b c
0 5 5 7 0 7 2 0 7 2
1 5 3 9 0 5 5 0 5 5
2 5 8 5 5 5 7 5 5 7
3 5 4 5 4 5 2 4 5 2
OLD answer:
you can do it using pd.concat():
In [35]: d = pd.concat({'A':d['A'], 'B':d2}, axis=1)
In [36]: d
Out[36]:
A B
a b c a b c
0 7 3 9 0 7 2
1 9 4 5 0 5 5
2 7 6 1 5 5 7
3 2 5 7 4 5 2
Explanation:
In [37]: d['A']
Out[37]:
a b c
0 7 3 9
1 9 4 5
2 7 6 1
3 2 5 7
In [40]: pd.concat({'A':d['A'], 'B':d2}, axis=1)
Out[40]:
A B
a b c a b c
0 5 5 7 0 7 2
1 5 3 9 0 5 5
2 5 8 5 5 5 7
3 5 4 5 4 5 2