We are using embedded C for the VxWorks real time operating system.
Currently, all of our UDP connections are started with TaskSpawn().
This routine creates and activates a new task with a specified
priority and options and returns a system-assigned ID.
We specify the task size, a priority, and pass in an entry point.
These are continuous connections, and thus every entry point contains an infinite loop where we delay before the next iteration.
Then I discovered period().
period spawns a task to call a function periodically.
Period sounds like what we should be using instead, but I can't find any information on when you would prefer this function over TaskSpawn. Period also doesn't allow specifying the task size or the priority, so how is it decided? Is the task size dynamic? What will the priority be?
There are also watchdogs.
Any task may create a watchdog timer and use it to run a specified routine in the context of the system-clock ISR, after a specified delay.
Again, this seems to be in line with the goal of processing data at a particular rate. Which do I choose when a task must continuously execute code at the same rate (i.e. in real time)?
What are the differences between these 3 methods?
Here is a little clarification:
taskSpawn(..)
creates a task with which you're free to do anything with you like.
Watchdogs shall only be used to monitor time constraints. Remember that the callback of the watchdog is executed within the context of the system clock ISR which has many limitations (e.g. free stack size, never use blocking function calls in an ISR, ...). Additionally executing "a lot of code" in the system clock ISR slows down your entire system.
period(..)
is intended to be a helper for the VxWorks shell and not to be used by a program.
With that being said your only option is to use taskSpawn(..)
unless you're doing some very simple stuff in which case period(..)
might be ok to use.
If you need to do things cyclically in a specific time frame you might look at timers or taskDelay(..)
in combination with sysClkRateSet(..)
.
Another option is to create two tasks. One that is setting a semaphore after a specific time intervall and the other "worker" tasks waits for this semaphore to do something. With that approach you separate "timing" from "action" which proved to be benefitial according to my experience. You also might want to monitor excution time of the "worker" task by using a watchdog.