I am having the following data on which I need to do apply aggregation function followed by groupby.
My data is as follows: data.csv
id,category,sub_category,count
0,x,sub1,10
1,x,sub2,20
2,x,sub2,10
3,y,sub3,30
4,y,sub3,5
5,y,sub4,15
6,z,sub5,20
Here I'm trying to get the count by sub-category wise. After that I need to store the result in JSON format. The following piece of code helps me in achieving that. test.py
import pandas as pd
df = pd.read_csv('data.csv')
sub_category_total = df['count'].groupby([df['category'], df['sub_category']]).sum()
print sub_category_total.reset_index().to_json(orient = "records")
The above code gives me the following format.
[{"category":"x","sub_category":"sub1","count":10},{"category":"x","sub_category":"sub2","count":30},{"category":"y","sub_category":"sub3","count":35},{"category":"y","sub_category":"sub4","count":15},{"category":"z","sub_category":"sub5","count":20}]
But, my desired format is as follows:
{
"x":[{
"sub_category":"sub1",
"count":10
},
{
"sub_category":"sub2",
"count":30}],
"y":[{
"sub_category":"sub3",
"count":35
},
{
"sub_category":"sub4",
"count":15}],
"z":[{
"sub_category":"sub5",
"count":20}]
}
By following the discussions @ How to convert pandas DataFrame result to user defined json format, I replaced the last 2 lines of test.py
with,
g = df.groupby('category')[["sub_category","count"]].apply(lambda x: x.to_dict(orient='records'))
print g.to_json()
It gives me the following output.
{"x":[{"count":10,"sub_category":"sub1"},{"count":20,"sub_category":"sub2"},{"count":10,"sub_category":"sub2"}],"y":[{"count":30,"sub_category":"sub3"},{"count":5,"sub_category":"sub3"},{"count":15,"sub_category":"sub4"}],"z":[{"count":20,"sub_category":"sub5"}]}
Though the above result is somewhat similar to my desired format, I couldn't perform any aggregation function over here as it throws error saying 'numpy.int64' object has no attribute 'to_dict'
. Hence, I end up getting all of the rows in the data file.
Can somebody help me in achieving the above JSON format?
I think you can first aggregate with sum
, parameter as_index=False
was added to groupby
, so output is Dataframe
df1
and then use other solution:
df1 = (df.groupby(['category','sub_category'], as_index=False)['count'].sum())
print (df1)
category sub_category count
0 x sub1 10
1 x sub2 30
2 y sub3 35
3 y sub4 15
4 z sub5 20
g = df1.groupby('category')[["sub_category","count"]]
.apply(lambda x: x.to_dict(orient='records'))
print (g.to_json())
{
"x": [{
"sub_category": "sub1",
"count": 10
}, {
"sub_category": "sub2",
"count": 30
}],
"y": [{
"sub_category": "sub3",
"count": 35
}, {
"sub_category": "sub4",
"count": 15
}],
"z": [{
"sub_category": "sub5",
"count": 20
}]
}