I know there are a lot of examples in internet, but what does need this code to work ?
frecuency oscillator = 4mhz
periode = 0.25us
duty_cicle = 250
Prescale = 16
PR2 = 124
#include <xc.h>
#include <stdio.h>
#include <stdlib.h>
#include <pic16f88.h>
#pragma config FOSC = HS // Oscillator Selection bits (INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN)
#pragma config WDTE = OFF // Watchdog Timer Enable bit (WDT disabled)
#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)
#pragma config MCLRE = OFF // RA5/MCLR/VPP Pin Function Select bit (RA5/MCLR/VPP pin function is digital input, MCLR internally tied to VDD)
#pragma config BOREN = ON // Brown-out Detect Enable bit (BOD enabled)
#pragma config LVP = OFF // Low-Voltage Programming Enable bit (RB4/PGM pin has digital I/O function, HV on MCLR must be used for programming)
#pragma config CPD = OFF // Data EE Memory Code Protection bit (Data memory code protection off)
#pragma config CP = OFF // Flash Program Memory Code Protection bit (Code protection off)
void main ()
{
while (1)
{
CCP1CON = 0x2C; /*activate PWM mode*/
PR2 = 0x7C; /*124 (DECIMAL)*/
T2CON = 0X06; /*prescale 16 */
CCPR1L = 0X3E;
}
}
I want to see :
Period of PWM = 2ms
Dutycicle = 1ms
Sincerilly NIN
First off topic: Don't include pic16f88.h, it's included by xc.h.
Little more off topic: If you use a more modern part (e.g. PIC16f1619), you can use the MPLAB Code Configurator to generate the TMR2 and CCP code for you. It'll also cost less and have more flash/ram. That device is on the curiosity board ($20).
On Topic: Your first stop is the datasheet.
The PWM section has the setup for PWM operation.
Step1: The timer 2 takes Fosc/4 as an input, which is 1mhz in your case. Target frequency is 500Hz. 1e6/500 = 2k. I'd suggest a prescaler of 16, and pr value of 125. This will give you exactly 500Hz.
Step2: We want a 50% duty cycle. CCP1L floor(125/2) = 62. CCP1X:CCP1Y = 0.5 * 4 = 2.
Step 3: Clear the tris bit.
Step4 and 5: Turn it on
// Step 1
TMR2ON = 0;
TOUTPS = 0;
T2CKPS = 2;
PR2 = 250U;
// Step 2
CCP1L = 62U;
CCP1X = 1;
CCP1Y = 0;
// Step 3
TRISB3 = 0;
// Step 4
TMR2ON = 1;
// Step 5
CCP1M = 0xC;
Hope that helps.