Search code examples
pythontensorflowconv-neural-networktensorflow-datasets

TensorFlow: training on my own image


I am new to TensorFlow. I am looking for the help on the image recognition where I can train my own image dataset.

Is there any example for training the new dataset?


Solution

  • If you are interested in how to input your own data in TensorFlow, you can look at this tutorial.
    I've also written a guide with best practices for CS230 at Stanford here.


    New answer (with tf.data) and with labels

    With the introduction of tf.data in r1.4, we can create a batch of images without placeholders and without queues. The steps are the following:

    1. Create a list containing the filenames of the images and a corresponding list of labels
    2. Create a tf.data.Dataset reading these filenames and labels
    3. Preprocess the data
    4. Create an iterator from the tf.data.Dataset which will yield the next batch

    The code is:

    # step 1
    filenames = tf.constant(['im_01.jpg', 'im_02.jpg', 'im_03.jpg', 'im_04.jpg'])
    labels = tf.constant([0, 1, 0, 1])
    
    # step 2: create a dataset returning slices of `filenames`
    dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
    
    # step 3: parse every image in the dataset using `map`
    def _parse_function(filename, label):
        image_string = tf.read_file(filename)
        image_decoded = tf.image.decode_jpeg(image_string, channels=3)
        image = tf.cast(image_decoded, tf.float32)
        return image, label
    
    dataset = dataset.map(_parse_function)
    dataset = dataset.batch(2)
    
    # step 4: create iterator and final input tensor
    iterator = dataset.make_one_shot_iterator()
    images, labels = iterator.get_next()
    

    Now we can run directly sess.run([images, labels]) without feeding any data through placeholders.


    Old answer (with TensorFlow queues)

    To sum it up you have multiple steps:

    1. Create a list of filenames (ex: the paths to your images)
    2. Create a TensorFlow filename queue
    3. Read and decode each image, resize them to a fixed size (necessary for batching)
    4. Output a batch of these images

    The simplest code would be:

    # step 1
    filenames = ['im_01.jpg', 'im_02.jpg', 'im_03.jpg', 'im_04.jpg']
    
    # step 2
    filename_queue = tf.train.string_input_producer(filenames)
    
    # step 3: read, decode and resize images
    reader = tf.WholeFileReader()
    filename, content = reader.read(filename_queue)
    image = tf.image.decode_jpeg(content, channels=3)
    image = tf.cast(image, tf.float32)
    resized_image = tf.image.resize_images(image, [224, 224])
    
    # step 4: Batching
    image_batch = tf.train.batch([resized_image], batch_size=8)