Search code examples
pythonmachine-learningtensorflowskflow

skflow.TensorFlowDNNRegressor parameters


I am new to skflow. With the following example code, I am able to initialize a neural network estimator.

regressor = skflow.TensorFlowDNNRegressor(
     hidden_units=[10, 10],
     steps=5000,
     learning_rate=0.1,
     batch_size=1)

I would like to know if these are the only input parameters for TensorFlowDNNRegressor or are there more parameters, which I can change? Could anyone please let me know where I can find this list of parameters? I am not able to find any documentation for it.


Solution

  • I found the documentation of this function here. (not very clean format yet).

    Here are the different parameters of the class:

    skflow.TensorFlowDNNRegressor.__init__(
         hidden_units,
         n_classes=0,
         tf_master='',
         batch_size=32,
         steps=200,
         optimizer='SGD',
         learning_rate=0.1,
         tf_random_seed=42,
         continue_training=False,
         config_addon=None,
         verbose=1,
         max_to_keep=5,
         keep_checkpoint_every_n_hours=10000)