I have a large binary file that I want to read in an array. The format of the binary files is:
I'm doing it like this:
# nlines - number of row in the binary file
# ncols - number of values to read from a row
fidbin=open('toto.mda' ,'rb'); #open this file
temp = fidbin.read(4) #skip the first 4 bytes
nvalues = nlines * ncols # Total number of values
array=np.zeros(nvalues,dtype=np.float)
#read ncols values per line and skip the useless data at the end
for c in range(int(nlines)): #read the nlines of the *.mda file
matrix = np.fromfile(fidbin, np.float64,count=int(ncols)) #read all the values from one row
Indice_start = c*ncols
array[Indice_start:Indice_start+ncols]=matrix
fidbin.seek( fidbin.tell() + 8) #fid.tell() the actual read position + skip bytes (4 at the end of the line + 4 at the beginning of the second line)
fidbin.close()
It works well but the problem is that is very slow for large binary file. Is there a way to increase the reading speed of the binary file?
You can use a structured data type and read the file with a single call to numpy.fromfile
. For example, my file qaz.mda
has five columns of floating point values between the four byte markers at the start and end of each row. Here's how you can create a structured data type and read the data.
First, create a data type that matches the format of each row:
In [547]: ncols = 5
In [548]: dt = np.dtype([('pre', np.int32), ('data', np.float64, ncols), ('post', np.int32)])
Read the file into a structured array:
In [549]: a = np.fromfile("qaz.mda", dtype=dt)
In [550]: a
Out[550]:
array([(1, [0.0, 1.0, 2.0, 3.0, 4.0], 0),
(2, [5.0, 6.0, 7.0, 8.0, 9.0], 0),
(3, [10.0, 11.0, 12.0, 13.0, 14.0], 0),
(4, [15.0, 16.0, 17.0, 18.0, 19.0], 0),
(5, [20.0, 21.0, 22.0, 23.0, 24.0], 0)],
dtype=[('pre', '<i4'), ('data', '<f8', (5,)), ('post', '<i4')])
Pull out just the data that we want:
In [551]: data = a['data']
In [552]: data
Out[552]:
array([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24.]])
You could also experiment with numpy.memmap
to see if it improves performance:
In [563]: a = np.memmap("qaz.mda", dtype=dt)
In [564]: a
Out[564]:
memmap([(1, [0.0, 1.0, 2.0, 3.0, 4.0], 0),
(2, [5.0, 6.0, 7.0, 8.0, 9.0], 0),
(3, [10.0, 11.0, 12.0, 13.0, 14.0], 0),
(4, [15.0, 16.0, 17.0, 18.0, 19.0], 0),
(5, [20.0, 21.0, 22.0, 23.0, 24.0], 0)],
dtype=[('pre', '<i4'), ('data', '<f8', (5,)), ('post', '<i4')])
In [565]: data = a['data']
In [566]: data
Out[566]:
memmap([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24.]])
Note that data
above is still a memory-mapped array. To ensure that the data is copied to an array in memory, numpy.copy
can be used:
In [567]: data = np.copy(a['data'])
In [568]: data
Out[568]:
array([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24.]])
Whether or not that is necessary depends on how you will use the array in the rest of your code.