I have this data.frame:
df <- data.frame(a=rnorm(500),b=rnorm(500),c=rnorm(500),
d=rnorm(500),e=rnorm(500),f=rnorm(500),g=rnorm(500))
And i run quantile regression:
library(quantreg)
a<-rq(a~g,tau = 0.5,method="br",data=df)
summary.rq(a)
b<-rq(b~g,tau = 0.5,method="br",data=df)
summary.rq(b)
c<-rq(c~g,tau = 0.5,method="br",data=df)
summary.rq(c)
d<-rq(d~g,tau = 0.5,method="br",data=df)
summary.rq(d)
e<-rq(e~g,tau = 0.5,method="br",data=df)
summary.rq(e)
f<-rq(f~g,tau = 0.5,method="br",data=df)
summary.rq(f)
g<-rq(g~g,tau = 0.5,method="br",data=df)
summary.rq(g)
For example:
summary.rq(a)
Call: rq(formula = a ~ g, tau = 0.5, data = df, method = "br")
tau: [1] 0.5
Coefficients:
coefficients lower bd upper bd
(Intercept) 0.12940 0.04870 0.17940
g -0.02131 -0.08078 0.05370
I want to build a matrix like this:
Matrix.Parameters.Interval<-matrix(0,7,6)
the first line will be related to the first model. In the first column goes the intercept parameter the 2º and 3º column its confidence interval(that I will extract from the summary
output), 4º column the variable parameter, and in the 5º and 6º column its interval (that I will extract from the summary
output)
modList <- list(a,b,c,d,e,f,g)
A function to extract information from a model and reformat it to a 1-row matrix with the information about the intercept (the first row) as the first half of the matrix and the information about the slope as the second half ...
tmpf <- function(model) {
matrix(coef(summary(model)),nrow=1,byrow=TRUE)
}
Run on each element of the list:
t(sapply(modList[1:5],tmpf))
the t()
is necessary because sapply
always returns results in a column-wise fashion.
This only works for the first 5 models; the 6th model is singular because the predictor and response are the same.
A more systematic way to do this:
tmpf2 <- function(respvar) {
fit <- rq(reformulate("g",response=respvar),
tau = 0.5,method="br",data=df)
matrix(coef(summary(fit)),nrow=1,byrow=TRUE)
}
t(sapply(names(df)[1:5],tmpf2))
This way you don't have to repeat code (DRY="do not repeat yourself"), and you don't have all of those fitted models cluttering your workspace.