Given the following data frame:
import pandas as pd
df = pd.DataFrame({
('Group', 'group'): ['a','a','a','b','b','b'],
('sum', 'sum'): [234, 234,544,7,332,766]
})
I'd like to create a new field which calculates the percentile of each value of "sum" per group in "group". The trouble is, I have 2 header columns and cannot figure out how to avoid getting the error:
ValueError: level > 0 only valid with MultiIndex
when I run this:
df=df.groupby('Group',level=1).sum.rank(pct=True, ascending=False)
I need to keep the headers in the same structure.
Thanks in advance!
To group by the first column, ('Group', 'group')
, and compute the rank for the ('sum', 'sum')
column use:
In [106]: df['rank'] = (df[('sum', 'sum')].groupby(df[('Group', 'group')]).rank(pct=True, ascending=False))
In [107]: df
Out[107]:
Group sum rank
group sum
0 a 234 0.833333
1 a 234 0.833333
2 a 544 0.333333
3 b 7 1.000000
4 b 332 0.666667
5 b 766 0.333333
Note that .rank(pct=True)
computes a percentage rank, not a percentile. To compute a percentile you could use scipy.stats.percentileofscore
.
import scipy.stats as stats
df['percentile'] = (df[('sum', 'sum')].groupby(df[('Group', 'group')])
.apply(lambda ser: 100-pd.Series([stats.percentileofscore(ser, x, kind='rank')
for x in ser], index=ser.index)))
yields
Group sum rank percentile
group sum
0 a 234 0.833333 50.000000
1 a 234 0.833333 50.000000
2 a 544 0.333333 0.000000
3 b 7 1.000000 66.666667
4 b 332 0.666667 33.333333
5 b 766 0.333333 0.000000