I know it can be easily realized using the package pandas, but because it is too sparse and large (170,000 x 5000), and at the end I need to use sklearn to deal with the data again, I'm wondering if there is a way to do with sklearn. I tried the one hot encoder, but got stuck to associate dummies with the 'id'.
df = pd.DataFrame({'id': [1, 1, 2, 2, 3, 3], 'item': ['a', 'a', 'c', 'b', 'a', 'b']})
id item
0 1 a
1 1 a
2 2 c
3 2 b
4 3 a
5 3 b
dummy = pd.get_dummies(df, prefix='item', columns=['item'])
dummy.groupby('id').sum().reset_index()
id item_a item_b item_c
0 1 2 0 0
1 2 0 1 1
2 3 1 1 0
Update:
Now I'm here, and the 'id' is lost, how to do aggregation then?
lab = sklearn.preprocessing.LabelEncoder()
labels = lab.fit_transform(np.array(df.item))
enc = sklearn.preprocessing.OneHotEncoder()
dummy = enc.fit_transform(labels.reshape(-1,1))
dummy.todense()
matrix([[ 1., 0., 0.],
[ 1., 0., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.],
[ 1., 0., 0.],
[ 0., 1., 0.]])
In case anyone needs a reference in the future, I put my solution here. I used scipy sparse matrix.
First, do a grouping and count the number of records.
df = df.groupby(['id','item']).size().reset_index().rename(columns={0:'count'})
This takes some time but not days.
Then use pivot table, which I found a solution here.
from scipy.sparse import csr_matrix
def to_sparse_pivot(df, id, item, count):
id_u = list(df[id].unique())
item_u = list(np.sort(df[item].unique()))
data = df[count].tolist()
row = df[id].astype('category', categories=id_u).cat.codes
col = df[item].astype('category', categories=item_u).cat.codes
return csr_matrix((data, (row, col)), shape=(len(id_u), len(item_u)))
Then call the function
result = to_sparse_pivot(df, 'id', 'item', 'count')