I wrote a function that is supposed to receive a list of tuples. I access the components of the tuples with #
and the code compiles:
fun recheck ([], n) = []
| recheck (h::t, n) =
if ((#1 h) * (#1 h)) + ((#2 h) * (#2 h)) = n then
h::recheck(t, n)
else
recheck(t, n)
But another function that basically does the same thing, namely receiving a list of tuples and accessing those, causes an error.
fun validate ([]) = true
| validate (h::t) =
if 1 = (#1 h) then
true
else
false
Can't find a fixed record type. Found near #1
What is the difference here and why does the latter cause an error?
The first function actually does not compile on its own.
But this entire snippet does:
fun drop ([], n) = []
| drop (h::t, 0) = h::t
| drop (h::t, n) =
drop(t, n-1)
fun sts_linear (y, n) =
if y < (Math.sqrt(n)+1.0) then
let
(* x^2 + y^2 = n => x = sqrt(n-y^2) *)
val x = Math.sqrt(n - (y * y));
val xr = Real.realRound(x);
in
if (abs(x - xr) < 0.000000001) then
[(Real.trunc xr, Real.trunc y)]@sts_linear (y+1.0, n)
else
(
[]@sts_linear (y+1.0, n)
)
end
else []
fun recheck ([], n) = []
| recheck (h::t, n) =
if ((#1 h) * (#1 h)) + ((#2 h) * (#2 h)) = n then
h::recheck(t, n)
else
recheck(t, n)
fun sts (n) =
(
let
val pairs = sts_linear(0.0, Real.fromInt n);
in
recheck(drop(pairs, Real.ceil( Real.fromInt (length(pairs))/2.0 ) ), n)
end
)
Your first code doesn't compile, at least with SML/NJ:
If you got it to compile then it must have been in a nonstandard extension of SML.
The problem with both of your definitions is that there is no polymorphic idea of a tuple
of arbitrary arity in SML. You can write functions to work on lists of pairs. You can write functions to work on lists of triples. But -- you can't write functions to work simultaneously on lists of pairs and lists of triples (at least if your function tries to do things with these pairs/triples as tuples).
One solution is to get rid of #
and use pattern-matching to extract the components:
fun validate [] = true
| validate ((x,y)::t) =
if x = 1 then
true
else
false
But, if you really want to write a function which can polymorphically apply to either lists of pairs or list of triples (or quadruples,...), the easiest thing to do is to represent the pairs, triples, etc. as lists rather than tuples. Lists which contains lists of nonspecified size are not a problem in SML.