I have two data frames that are related by a really long user ID, and I want to replace these values with something more readable, like a simple integer value. Obviously I want to keep these values consistent between data frames and I was wondering if there is a simple way to do this. Here is what the data.frames look like:
ArtistData - Shows how many times a user listened to a particular artist:
UserID Artist Plays
00000c289a1829a808ac09c00daf10bc3c4e223b elvenking 706
00000c289a1829a808ac09c00daf10bc3c4e223b lunachicks 538
00001411dc427966b17297bf4d69e7e193135d89 stars 373
... ... ...
UserData - Shows information on each individual user:
UserID gender age country
00001411dc427966b17297bf4d69e7e193135d89 m 21 Germany
00004d2ac9316e22dc007ab2243d6fcb239e707d f 34 Mexico
000063d3fe1cf2ba248b9e3c3f0334845a27a6bf m 27 Poland
... ... ... ...
So basically, can I replace these long strings that have no meaning for me with an integer that is consistent between each data frame?
Convert to factor
s with simplified labels, using all possible UserID
's in both datasets:
levs <- union(UserData$UserID, ArtistData$UserID)
ArtistData$newid <- factor(
ArtistData$UserID, levels=levs, labels=seq_along(levs)
)
UserData$newid <- factor(
UserData$UserID, levels=levs, labels=seq_along(levs)
)
ArtistData
# UserID Artist Plays newid
#1 00000c289a1829a808ac09c00daf10bc3c4e223b elvenking 706 4
#2 00000c289a1829a808ac09c00daf10bc3c4e223b lunachicks 538 4
#3 00001411dc427966b17297bf4d69e7e193135d89 stars 373 1
UserData
# UserID gender age country newid
#1 00001411dc427966b17297bf4d69e7e193135d89 m 21 Germany 1
#2 00004d2ac9316e22dc007ab2243d6fcb239e707d f 34 Mexico 2
#3 000063d3fe1cf2ba248b9e3c3f0334845a27a6bf m 27 Poland 3