Search code examples
pythonpandasdataframetypeconverter

Convert a column in pandas dataframe from String to Float


I've already read about various solutions, and tried the solution stated here: Pandas: Converting to numeric, creating NaNs when necessary

But it didn't really solve my problem: I have a dataframe contains multiple columns, in where a column ['PricePerSeat_Outdoor'] contains some float values, some empty values, and some '-'

    print type(df_raw['PricePerSeat_Outdoor'][99])
    print df_raw['PricePerSeat_Outdoor'][95:101]
    df_raw['PricePerSeat_Outdoor'] = df_raw['PricePerSeat_Outdoor'].apply(pd.to_numeric, errors='coerce')
    print type(df_raw['PricePerSeat_Outdoor'][99]) 

Then I got:

<type 'str'>
95     17.21
96     17.24
97         -
98         -
99      17.2
100    17.24
Name: PricePerSeat_Outdoor, dtype: object
<type 'str'>

Values at row #98 and 99 didn't get converted. Again, I've already tried multiple methods including following but it just didn't work. Much appreciated if someone can give me some hints.

df_raw['PricePerSeat_Outdoor'] = df_raw['PricePerSeat_Outdoor'].apply(pd.to_numeric, errors='coerce')

Also, how can I convert multiple columns to numeric at once? Thanks.


Solution

  • try this:

    df_raw['PricePerSeat_Outdoor'] = pd.to_numeric(df_raw['PricePerSeat_Outdoor'], errors='coerce')
    

    Here is an example:

    In [97]: a = pd.Series(['17.21','17.34','15.23','-','-','','12.34']
    
    In [98]: b = pd.Series(['0.21','0.34','0.23','-','','-','0.34'])
    
    In [99]: df = pd.DataFrame({'a':a, 'b':b})
    
    In [100]: df['c'] = np.random.choice(['a','b','b'], len(df))
    
    In [101]: df
    Out[101]:
           a     b  c
    0  17.21  0.21  a
    1  17.34  0.34  b
    2  15.23  0.23  b
    3      -     -  b
    4      -        b
    5            -  b
    6  12.34  0.34  b
    
    In [102]: cols_to_convert = ['a','b']
    
    In [103]: cols_to_convert
    Out[103]: ['a', 'b']
    
    In [104]: for col in cols_to_convert:
       .....:         df[col] = pd.to_numeric(df[col], errors='coerce')
       .....:
    
    In [105]: df
    Out[105]:
           a     b  c
    0  17.21  0.21  a
    1  17.34  0.34  b
    2  15.23  0.23  b
    3    NaN   NaN  b
    4    NaN   NaN  b
    5    NaN   NaN  b
    6  12.34  0.34  b
    

    check:

    In [106]: df.dtypes
    Out[106]:
    a    float64
    b    float64
    c     object
    dtype: object