I hope I am not downvoted this time. I have been struggling with parallel processing in Python for a while(2 days , exactly). I have checking these resources(a partial list is shown here:
(a) http://eli.thegreenplace.net/2013/01/16/python-paralellizing-cpu-bound-tasks-with-concurrent-futures
(b) https://pythonadventures.wordpress.com/tag/processpoolexecutor/
I came unstuck. What I want to do is this:
Master:
Break up the file into chunks(strings or numbers)
Broadcast a pattern to be searched to all the workers
Receive the offsets in the file where the pattern was found
Workers:
Receive pattern and chunk of text from the master
Compute()
Send back the offsets to the master.
I tried to implement this using MPI/concurrent.futures/multiprocessing and came unstuck.
My naive implementation using multiprocessing module
import multiprocessing
filename = "file1.txt"
pat = "afow"
N = 1000
""" This is the naive string search algorithm"""
def search(pat, txt):
patLen = len(pat)
txtLen = len(txt)
offsets = []
# A loop to slide pattern[] one by one
# Range generates numbers up to but not including that number
for i in range ((txtLen - patLen) + 1):
# Can not use a for loop here
# For loops in C with && statements must be
# converted to while statements in python
counter = 0
while(counter < patLen) and pat[counter] == txt[counter + i]:
counter += 1
if counter >= patLen:
offsets.append(i)
return str(offsets).strip('[]')
""""
This is what I want
if __name__ == "__main__":
tasks = []
pool_outputs = []
pool = multiprocessing.Pool(processes=5)
with open(filename, 'r') as infile:
lines = []
for line in infile:
lines.append(line.rstrip())
if len(lines) > N:
pool_output = pool.map(search, tasks)
pool_outputs.append(pool_output)
lines = []
if len(lines) > 0:
pool_output = pool.map(search, tasks)
pool_outputs.append(pool_output)
pool.close()
pool.join()
print('Pool:', pool_outputs)
"""""
with open(filename, 'r') as infile:
for line in infile:
print(search(pat, line))
I would be grateful for any guidance especially with the concurrent.futures. Thanks for your time. Valeriy helped me with his addition and I thank him for that.
But if anyone could just indulge me for a moment, this is the code I was working on for the concurrent.futures(working off an example I saw somewhere)
from concurrent.futures import ProcessPoolExecutor, as_completed
import math
def search(pat, txt):
patLen = len(pat)
txtLen = len(txt)
offsets = []
# A loop to slide pattern[] one by one
# Range generates numbers up to but not including that number
for i in range ((txtLen - patLen) + 1):
# Can not use a for loop here
# For loops in C with && statements must be
# converted to while statements in python
counter = 0
while(counter < patLen) and pat[counter] == txt[counter + i]:
counter += 1
if counter >= patLen:
offsets.append(i)
return str(offsets).strip('[]')
#Check a list of strings
def chunked_worker(lines):
return {0: search("fmo", line) for line in lines}
def pool_bruteforce(filename, nprocs):
lines = []
with open(filename) as f:
lines = [line.rstrip('\n') for line in f]
chunksize = int(math.ceil(len(lines) / float(nprocs)))
futures = []
with ProcessPoolExecutor() as executor:
for i in range(nprocs):
chunk = lines[(chunksize * i): (chunksize * (i + 1))]
futures.append(executor.submit(chunked_worker, chunk))
resultdict = {}
for f in as_completed(futures):
resultdict.update(f.result())
return resultdict
filename = "file1.txt"
pool_bruteforce(filename, 5)
Thanks again , Valeriy and anyone who attempts to help me solve my riddle.
You are using several arguments, so:
import multiprocessing
from functools import partial
filename = "file1.txt"
pat = "afow"
N = 1000
""" This is the naive string search algorithm"""
def search(pat, txt):
patLen = len(pat)
txtLen = len(txt)
offsets = []
# A loop to slide pattern[] one by one
# Range generates numbers up to but not including that number
for i in range ((txtLen - patLen) + 1):
# Can not use a for loop here
# For loops in C with && statements must be
# converted to while statements in python
counter = 0
while(counter < patLen) and pat[counter] == txt[counter + i]:
counter += 1
if counter >= patLen:
offsets.append(i)
return str(offsets).strip('[]')
if __name__ == "__main__":
tasks = []
pool_outputs = []
pool = multiprocessing.Pool(processes=5)
lines = []
with open(filename, 'r') as infile:
for line in infile:
lines.append(line.rstrip())
tasks = lines
func = partial(search, pat)
if len(lines) > N:
pool_output = pool.map(func, lines )
pool_outputs.append(pool_output)
elif len(lines) > 0:
pool_output = pool.map(func, lines )
pool_outputs.append(pool_output)
pool.close()
pool.join()
print('Pool:', pool_outputs)