I created simple evaluator for statements.
I would like to do it using transformers - mix IO monad with State.
Could somebody explain how to do it ? It is something that I can't deal with it - transformers.
execStmt :: Stmt -> State (Map.Map String Int) ()
execStmt s = case s of
SAssigment v e -> get >>= (\s -> put (Map.insert v (fromJust (runReader (evalExpM e) s)) s))
SIf e s1 s2 -> get >>= (\s -> case (fromJust (runReader (evalExpM e) s)) of
0 -> execStmt s2
_ -> execStmt s1
)
SSkip -> return ()
SSequence s1 s2 -> get >>= (\s -> (execStmt s1) >>= (\s' -> execStmt s2))
SWhile e s1 -> get >>= (\s -> case (fromJust (runReader (evalExpM e) s)) of
0 -> return ()
_ -> (execStmt s1) >>= (\s' -> execStmt (SWhile e s1)))
execStmt' :: Stmt -> IO ()
execStmt' stmt = putStrLn $ show $ snd $ runState (execStmt stmt) Map.empty
Here's a basic program outline
newtype StateIO s a = SIO {runSIO :: s -> IO (a, s)}
put :: s -> StateIO s ()
put s' = SIO $ \_s -> return ((), s')
liftIO :: IO a -> StateIO s a
liftIO ia = SIO $ \s -> do
a <- ia
return (a, s)
instance Functor (StateIO s) where
fmap ab (SIO sa) = SIO $ \s -> do
(a, s') <- sa s
let b = ab a
return (b, s')
instance Applicative (StateIO s) where
pure a = SIO $ \s -> return (a, s)
(SIO sab) <*> (SIO sa) = SIO $ \s -> do
(ab, s' ) <- sab s
(a , s'') <- sa s'
let b = ab a
return (b, s')
StateIO s a
is something that takes an input state (of type s
), and returns an IO action to produce something of type a
as well as a new state.
To check for understanding, do the following
get :: StateIO s s
which retrieves the state.Monad (StateIO s)
(it will be similar to the code above).newtype StateT m s a = StateT {run :: s -> m (a, s)}
, and translate the above code to that (with the constraint Monad m
). This will show you how monad transformers work.