I have trained a model with images.
And now would like to extract the fc-6
features to .npy
files.
I'm using caffe.set_mode_gpu()
to run the caffe.Classifier
and extract the features.
Instead of extracting and saving the feature per frame. I save all the features of a folder to a temp variable and the result of the complete video to a npy file(decreasing the number of write operations to disk).
I have also heard that I could use the Caffe.Net and then pass a batch of images. But I'm not sure of what preprocessing has to be done and if this is faster ?
import os
import shutil
import sys
import glob
from multiprocessing import Pool
import numpy as np
import os, sys, getopt
import time
def keep_fldrs(path,listr):
ll =list()
for x in listr:
if os.path.isdir(path+x):
ll.append(x)
return ll
def keep_img(path,listr):
ll = list()
for x in listr:
if os.path.isfile(path+str(x)) & str(x).endswith('.jpg'):
ll.append(x)
return ll
def ifdir(path):
if not os.path.isdir(path):
os.makedirs(path)
# Main path to your caffe installation
caffe_root = '/home/anilil/projects/lstm/lisa-caffe-public/python'
# Model prototxt file
model_prototxt = '/home/anilil/projects/caffe2tensorflow/deploy_singleFrame.prototxt'
# Model caffemodel file
model_trained = '/home/anilil/projects/caffe2tensorflow/snapshots_singleFrame_flow_v2_iter_55000.caffemodel'
sys.path.insert(0, caffe_root)
import caffe
caffe.set_mode_gpu()
net = caffe.Classifier(model_prototxt, model_trained,
mean=np.array([128, 128, 128]),
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(255, 255))
Root='/media/anilil/Data/Datasets/UCf_scales/ori_mv_vis/Ori_MV/'
Out_fldr='/media/anilil/Data/Datasets/UCf_scales/ori_mv_vis/feat_fc6/'
allcalsses=keep_fldrs(Root,os.listdir(Root))
for classin in allcalsses:
temp_class=Root+classin+'/'
temp_out_class=Out_fldr+classin+'/'
ifdir(temp_out_class)
allvids_folders=keep_fldrs(temp_class,os.listdir(temp_class))
for each_vid_fldr in allvids_folders:
temp_pres_dir=temp_class+each_vid_fldr+'/'
temp_out_pres_dir=temp_out_class+each_vid_fldr+'/'
ifdir(temp_out_pres_dir)
all_images=keep_img(temp_pres_dir,os.listdir(temp_pres_dir))
frameno=0
if os.path.isfile(temp_out_pres_dir+'video.npy'):
continue
start = time.time()
temp_npy= np.ndarray((len(all_images),4096),dtype=np.float32)
for each_image in all_images:
input_image = caffe.io.load_image(temp_pres_dir+each_image)
prediction = net.predict([input_image],oversample=False)
temp_npy[frameno,:]=net.blobs['fc6'].data[0]
frameno=frameno+1
np.save(temp_out_pres_dir+'video.npy',temp_npy)
end = time.time()
print "lenght of imgs {} and time taken is {}".format(len(all_images),(end - start))
print ('Class {} done'.format(classin))
lenght of imgs 426 and time taken is 388.539139032
lenght of imgs 203 and time taken is 185.467905998
I found the best answer here in this post.
Till now I had used a
net = caffe.Classifier(model_prototxt, model_trained,
mean=np.array([128, 128, 128]),
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(255, 255))
to initialize a model and get the output per image. But this method is really slow and requires around .9 seconds per image.
The best Idea is to pass a batch of images(maybe 100,200,250) changing. Depending on how much memory you have on your GPU.
for this I set caffe.set_mode_gpu()
as I have one and It's faster when you send large batches.
Initialize the model with ur trained model.
net=caffe.Net(model_prototxt,model_trained,caffe.TEST)
Create a Transformer and make sure to set mean and other values depending on how u trained your model.
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1)) # height*width*channel -> channel*height*width
mean_file = np.array([128, 128, 128])
transformer.set_mean('data', mean_file) #### subtract mean ####
transformer.set_raw_scale('data', 255) # pixel value range
transformer.set_channel_swap('data', (2,1,0)) # RGB -> BGR
data_blob_shape = net.blobs['data'].data.shape
data_blob_shape = list(data_blob_shape)
Read a group of images and convert to the network input.
net.blobs['data'].reshape(len(all_images), data_blob_shape[1], data_blob_shape[2], data_blob_shape[3])
images = [temp_pres_dir+str(x) for x in all_images]
net.blobs['data'].data[...] = map(lambda x:
transformer.preprocess('data',caffe.io.load_image(x)), images)
Pass the batch of images through network.
out = net.forward()
You can use this output as you wish.