This is a question of speed. I'm trying to solve a diffusion equation which has three behavior states where:
Bottleneck is the else statement in the diffusion operator function
The equilibrium state has a simple T operator and Diffusion operator. It just gets rather complicated for the other two states. And so far I haven't had the patience to sit through the code run times. As far as I know the equations are correct, and the output of the equilibrium state appears correct, perhaps someone has some tips to increase the speed for the non-equilibrium states?
(Euler solution (FTCS) instead of Runge-Kutta would be quicker I imagine. Haven't tried this yet.)
You can import any black and white image to try the code out on.
import numpy as np
import sympy as sp
import scipy.ndimage.filters as flt
from PIL import Image
# import image
im = Image.open("/home/will/Downloads/zebra.png")
arr = np.array(im)
arr=arr/253.
def T(lamda,x):
"""
T Operator
lambda is a "steering" constant between 3 behavior states
-----------------------------
0 -> linearity
+inf -> max
-inf -> min
-----------------------------
"""
if lamda == 0: # linearity
return x
elif lamda > 0: # Half-wave rectification
return np.max(x,0)
elif lamda < 0: # Inverse half-wave rectification
return np.min(x,0)
def Diffusion_operator(lamda,f,t):
"""
2D Spatially Discrete Non-Linear Diffusion
------------------------------------------
Special case where lambda == 0, operator becomes Laplacian
Parameters
----------
D : int diffusion coefficient
h : int step size
t0 : int stimulus injection point
stimulus : array-like luminance distribution
Returns
----------
f : array-like output of diffusion equation
-----------------------------
0 -> linearity (T[0])
+inf -> positive K(lamda)
-inf -> negative K(lamda)
-----------------------------
"""
if lamda == 0: # linearity
return flt.laplace(f)
else: # non-linearity
f_new = np.zeros(f.shape)
for x in np.arange(0,f.shape[0]-1):
for y in np.arange(0,f.shape[1]-1):
f_new[x,y]=T(lamda,f[x+1,y]-f[x,y]) + T(lamda,f[x-1,y]-f[x,y]) + T(lamda,f[x,y+1]-f[x,y])
+ T(lamda,f[x,y-1]-f[x,y])
return f_new
def Dirac_delta_test(tester):
# Limit injection to unitary multiplication, not infinite
if np.sum(sp.DiracDelta(tester)) == 0:
return 0
else:
return 1
def Runge_Kutta(stimulus,lamda,t0,h,N,D,t_N):
"""
4th order Runge-Kutta solution to:
linear and spatially discrete diffusion equation (ignoring leakage currents)
Adiabatic boundary conditions prevent flux exchange over domain boundaries
Parameters
---------------
stimulus : array_like input stimuli [t,x,y]
lamda : int 0 +/- inf
t0 : int point of stimulus "injection"
h : int step size
N : int array size (stimulus.shape[1])
D : int diffusion coefficient [constant]
Returns
----------------
f : array_like computed diffused array
"""
f = np.zeros((t_N+1,N,N)) #[time, equal shape space dimension]
t = np.zeros(t_N+1)
if lamda ==0:
""" Linearity """
for n in np.arange(0,t_N):
k1 = D*flt.laplace(f[t[n],:,:]) + stimulus*Dirac_delta_test(t[n]-t0)
k1 = k1.astype(np.float64)
k2 = D*flt.laplace(f[t[n],:,:]+(0.5*h*k1)) + stimulus*Dirac_delta_test((t[n]+(0.5*h))- t0)
k2 = k2.astype(np.float64)
k3 = D*flt.laplace(f[t[n],:,:]+(0.5*h*k2)) + stimulus*Dirac_delta_test((t[n]+(0.5*h))-t0)
k3 = k3.astype(np.float64)
k4 = D*flt.laplace(f[t[n],:,:]+(h*k3)) + stimulus*Dirac_delta_test((t[n]+h)-t0)
k4 = k4.astype(np.float64)
f[n+1,:,:] = f[n,:,:] + (h/6.) * (k1 + 2.*k2 + 2.*k3 + k4)
t[n+1] = t[n] + h
return f
else:
""" Non-Linearity THIS IS SLOW """
for n in np.arange(0,t_N):
k1 = D*Diffusion_operator(lamda,f[t[n],:,:],t[n]) + stimulus*Dirac_delta_test(t[n]-t0)
k1 = k1.astype(np.float64)
k2 = D*Diffusion_operator(lamda,(f[t[n],:,:]+(0.5*h*k1)),t[n]) + stimulus*Dirac_delta_test((t[n]+(0.5*h))- t0)
k2 = k2.astype(np.float64)
k3 = D*Diffusion_operator(lamda,(f[t[n],:,:]+(0.5*h*k2)),t[n]) + stimulus*Dirac_delta_test((t[n]+(0.5*h))-t0)
k3 = k3.astype(np.float64)
k4 = D*Diffusion_operator(lamda,(f[t[n],:,:]+(h*k3)),t[n]) + stimulus*Dirac_delta_test((t[n]+h)-t0)
k4 = k4.astype(np.float64)
f[n+1,:,:] = f[n,:,:] + (h/6.) * (k1 + 2.*k2 + 2.*k3 + k4)
t[n+1] = t[n] + h
return f
# Code to run
N=arr.shape[1] # Image size
stimulus=arr[0:N,0:N,1]
D = 0.3 # Diffusion coefficient [0>D>1]
h = 1 # Runge-Kutta step size [h > 0]
t0 = 0 # Injection time
t_N = 100 # End time
f_out_equil = Runge_Kutta(stimulus,0,t0,h,N,D,t_N)
f_out_min = Runge_Kutta(stimulus,-1,t0,h,N,D,t_N)
f_out_max = Runge_Kutta(stimulus,1,t0,h,N,D,t_N)
In short, f_out_equil is relatively quick to calculate, whereas min and max cases are expensive and slow.
Here's a link to an image I have been using: http://4.bp.blogspot.com/_KbtOtXslVZE/SweZiZWllzI/AAAAAAAAAIg/i9wc-yfdW78/s200/Zebra_Black_and_White_by_Jenvanw.jpg
Tips on improving my coding appreciated, Many thanks,
Here's a quick plotting script for the output
import matplotlib.pyplot as plt
fig1, (ax1,ax2,ax3,ax4,ax5) = plt.subplots(ncols=5, figsize=(15,5))
ax1.imshow(f_out_equil[1,:,:],cmap='gray')
ax2.imshow(f_out_equil[t_N/10,:,:],cmap='gray')
ax3.imshow(f_out_equil[t_N/2,:,:],cmap='gray')
ax4.imshow(f_out_equil[t_N/1.5,:,:],cmap='gray')
ax5.imshow(f_out_equil[t_N,:,:],cmap='gray')
For loops in python tend to be slow; you can get a massive speedup by vectorizing as much as you can. (This is going to help you a lot with any numerical problems going forward). The new T
operator works on the full array all at once, and the calls to np.roll
in Diffusion_operator
line the image array up properly for the finite difference calculations.
Whole thing ran in about 10 s on my computer.
def T(lamda,x):
"""
T Operator
lambda is a "steering" constant between 3 behavior states
-----------------------------
0 -> linearity
+inf -> max
-inf -> min
-----------------------------
"""
if lamda == 0: # linearity
return x
elif lamda > 0: # Half-wave rectification
maxval = np.zeros_like(x)
return np.array([x, maxval]).max(axis=0)
elif lamda < 0: # Inverse half-wave rectification
minval = np.zeros_like(x)
return np.array([x, minval]).min(axis=0)
def Diffusion_operator(lamda,f,t):
"""
2D Spatially Discrete Non-Linear Diffusion
------------------------------------------
Special case where lambda == 0, operator becomes Laplacian
Parameters
----------
D : int diffusion coefficient
h : int step size
t0 : int stimulus injection point
stimulus : array-like luminance distribution
Returns
----------
f : array-like output of diffusion equation
-----------------------------
0 -> linearity (T[0])
+inf -> positive K(lamda)
-inf -> negative K(lamda)
-----------------------------
"""
if lamda == 0: # linearity
return flt.laplace(f)
else: # non-linearity
f_new = T(lamda,np.roll(f,1, axis=0) - f) \
+ T(lamda,np.roll(f,-1, axis=0) - f) \
+ T(lamda,np.roll(f, 1, axis=1) - f) \
+ T(lamda,np.roll(f,-1, axis=1) - f)
return f_new