I tried to wrap my head around the problem of how to visualize a bunch of relative frequencies in a way that makes it easy to see how they fare compared to each other. The differences aren't gigantic in terms of distribution, which, of course, I also consider something worthy to be shown. I've managed to create a relatively simple point plot, however, I don't think it really looks good enough.
The code is straightforward (albeit unfinished as far as visual tweaks are concerned), I guess:
library(ggplot2)
copuladeletion <- read.table(text = "Type Distribution Family
NP 0.39344 Austronesian
NP 0.30232 Mon-Khmer
NP 0.3125 Tai-Kadai
NP 0.29230 Sinitic
NP 0.26785 Other
AdjP 0.44262 Austronesian
AdjP 0.53488 Mon-Khmer
AdjP 0.625 Tai-Kadai
AdjP 0.55384 Sinitic
AdjP 0.58928 Other
AdvP 0.03278 Austronesian
AdvP 0.00000 Mon-Khmer
AdvP 0.00000 Tai-Kadai
AdvP 0.04615 Sinitic
AdvP 0.07142 Other
EX 0.01639 Austronesian
EX 0.02325 Mon-Khmer
EX 0.00000 Tai-Kadai
EX 0.03076 Sinitic
EX 0.01785 Other
Clause 0.08196 Austronesian
Clause 0.02325 Mon-Khmer
Clause 0.0625 Tai-Kadai
Clause 0.03076 Sinitic
Clause 0.05357 Other
Other 0.01639 Austronesian
Other 0.11627 Mon-Khmer
Other 0.00000 Tai-Kadai
Other 0.04615 Sinitic
Other 0.00000 Other", header = TRUE)
ggplot(copuladeletion) + geom_point(aes(Distribution, Type, colour=Family,size=1))
Which yields the following image:
So, my questions are:
Do you think this visualization works well enough? Are there any preferable options over a simple point plot for these data?
Thank you very much in advance!
Perhaps just another take on your strip charts:
library(ggplot2)
copuladeletion <- read.table(text=txt, header=TRUE)
gg <- ggplot(copuladeletion)
gg <- gg + geom_point(aes(Distribution, Type, colour=Family),
shape="|", size=10)
gg <- gg + scale_x_continuous(breaks=seq(0, 0.7, 0.1))
gg <- gg + scale_y_discrete(expand=c(0,0))
gg <- gg + scale_colour_brewer(name="", palette="Set1")
gg <- gg + facet_wrap(~Type, ncol=1, scales="free_y")
gg <- gg + guides(colour=guide_legend(override.aes=list(shape=15, size=3)))
gg <- gg + labs(x=NULL, y=NULL, title="Family Distribution by Type")
gg <- gg + theme_bw()
gg <- gg + theme(panel.grid.major=element_blank())
gg <- gg + theme(panel.grid.minor=element_blank())
gg <- gg + theme(strip.background=element_blank())
gg <- gg + theme(strip.text=element_blank())
gg <- gg + theme(axis.ticks=element_blank())
gg <- gg + theme(legend.key=element_blank())
gg <- gg + theme(legend.position="bottom")
gg
To slightly compensate for the overlaps (as Roman has pointed out a cpl times) you can use a proper line vs a hack-y point:
gg <- ggplot(copuladeletion)
gg <- gg + geom_segment(aes(x=Distribution, xend=Distribution,
y=0, yend=1, colour=Family), size=0.25)
gg <- gg + scale_x_continuous(breaks=seq(0, 0.7, 0.1))
gg <- gg + scale_y_discrete(expand=c(0,0))
gg <- gg + scale_colour_brewer(name="", palette="Set1")
gg <- gg + facet_wrap(~Type, ncol=1, scales="free_y", switch="y")
gg <- gg + labs(x=NULL, y=NULL, title="Family Distribution by Type")
gg <- gg + guides(colour=guide_legend(override.aes=list(shape=15, size=3)))
gg <- gg + theme_bw()
gg <- gg + theme(panel.border=element_rect(color="#2b2b2b", size=0.15))
gg <- gg + theme(panel.grid.major=element_blank())
gg <- gg + theme(panel.grid.minor=element_blank())
gg <- gg + theme(strip.background=element_blank())
gg <- gg + theme(strip.text.y=element_text(angle=180))
gg <- gg + theme(axis.ticks=element_blank())
gg <- gg + theme(legend.key=element_blank())
gg <- gg + theme(legend.position="bottom")
gg
You can add an aesthetic to map linetype
as well (and hjust
the y labels as you like). These thin lines are kinda hard to read (so tweak size
at-will as well), but I do think a strip chart works pretty well for this data. You may want to "zoom out" the EX
strip in a separate plot if you need to (I have no idea what this data really is trying to say :-)