first question ever here... I am coding a simple 3-card poker hand evaluator and am having problems finding/extracting multiple "straights" (sequential series of values) from an array of values.
I need to extract and return EVERY straight the array possibly has. Here's an example:
(assume array is first sorted numerically incrementing)
myArray = [1h,2h,3c,3h,4c]
Possible three-value sequences are: [1h,2h,3c] [1h,2h,3h] [2h,3c,4c] [2h,3h,4c]
Here is my original code to find sequences of 3, where the array contains card objects with .value and .suit. For simplicity in this question I just put "2h" etc here:
private var _pokerHand = [1h,2h,3c,3h,4c];
private function getAllStraights(): Array
{
var foundStraights:Array = new Array();
for (var i: int = 0; i < (_handLength - 2); i++)
{
if ((_pokerHand[i].value - _pokerHand[i + 1].value) == 1 && (_pokerHand[i + 1].value - _pokerHand[i + 2].value) == 1)
{
trace("found a straight!");
foundStraights.push(new Array(_pokerHand[i], _pokerHand[i + 1], _pokerHand[i + 2]));
}
}
return foundStraights;
}
but it of course fails when there are value duplicates (like the 3's above). I cannot discard duplicates because they could be of different suits. I need every possible straight as in the example above. This allows me to run the straights through a "Flush" function to find "straight flush".
What array iteration technique am I missing?
This is an interesting problem. Given the popularity of poker games (and Flash) I'm sure this has been solved many times before, but I couldn't find an example online. Here's how I would approach it:
This seems to do what you want (Card
object has .value
as int
):
private function getAllStraights(cards:Vector.<Card>, straightLength:uint = 3):Vector.<Vector.<Card>> {
var foundStraights:Vector.<Vector.<Card>> = new <Vector.<Card>>[];
var possibleStraights:Vector.<Vector.<Card>> = new <Vector.<Card>>[];
for each (var startingCard:Card in cards) {
possibleStraights.push(new <Card>[startingCard]);
}
while (possibleStraights.length) {
var possibleStraight:Vector.<Card> = possibleStraights.shift();
var lastCard:Card = possibleStraight[possibleStraight.length - 1];
var possibleNextCards:Vector.<Card> = new <Card>[];
for (var i:int = cards.indexOf(lastCard) + 1; i < cards.length; i++) {
var nextCard:Card = cards[i];
if (nextCard.value == lastCard.value)
continue;
if (nextCard.value == lastCard.value + 1)
possibleNextCards.push(nextCard);
else
break;
}
for each (var possibleNextCard:Card in possibleNextCards) {
var possibleNextStraight:Vector.<Card> = possibleStraight.slice().concat(new <Card>[possibleNextCard]);
if (possibleNextStraight.length == straightLength)
foundStraights.push(possibleNextStraight);
else
possibleStraights.push(possibleNextStraight);
}
}
return foundStraights;
}
Given [1♥,2♥,3♣,3♥,4♣]
you get: [1♥,2♥,3♣], [1♥,2♥,3♥], [2♥,3♣,4♣], [2♥,3♥,4♣]
It gets really interesting when you have a lot of duplicates, like [1♥,1♣,1♦,1♠,2♥,2♣,3♦,3♠,4♣,4♦,4♥]
. This gives you:
[1♥,2♥,3♦], [1♥,2♥,3♠], [1♥,2♣,3♦], [1♥,2♣,3♠], [1♣,2♥,3♦], [1♣,2♥,3♠], [1♣,2♣,3♦], [1♣,2♣,3♠], [1♦,2♥,3♦], [1♦,2♥,3♠], [1♦,2♣,3♦], [1♦,2♣,3♠], [1♠,2♥,3♦], [1♠,2♥,3♠], [1♠,2♣,3♦], [1♠,2♣,3♠], [2♥,3♦,4♣], [2♥,3♦,4♦], [2♥,3♦,4♥], [2♥,3♠,4♣], [2♥,3♠,4♦], [2♥,3♠,4♥], [2♣,3♦,4♣], [2♣,3♦,4♦], [2♣,3♦,4♥], [2♣,3♠,4♣], [2♣,3♠,4♦], [2♣,3♠,4♥]
I haven't checked this thoroughly but it looks right at a glance.