I have a function F which takes as an input a vector a. Both the output of the function and a are vectors of length N, where N is arbitrary. Each component Fn is of the form g(a(n),a(n-k)), where g is the same for each component.
I want to implement this function in matlab using its symbolic functionality and calculate its Jacobian (and then store both the function and its jacobian as a regular .m file using matlabFunction
). I know how to do this for a function where each input is a scalar that can be handled manually. But here I want a script that is capable of producing these files for any N. Is there a nice way to do this?
One solution I came up with is to generate an array of strings "a0","a1", ..., "aN" and define each component of the output using eval
. But this is messy and I was wondering if there is a better way.
Thank you!
[EDIT]
Here is a minimal working example of my current solution:
function F = F_symbolically(N)
%generate symbols
for n = 1:N
syms(['a',num2str(n)]);
end
%define output
F(1) = a1;
for n = 2:N
F(n) = eval(sprintf('a%i + a%i',n,n-1));
end
Try this:
function F = F_symbolically(N)
a = sym('a',[1 N]);
F = a(1);
for i=2:N
F(i) = a(i) + a(i-1);
end
end
Note the use of sym
function (not syms
) to create an array of symbolic variables.