Search code examples
indexingcudanvidiapycuda

CUDA indexing does not work as expected


I'm trying to process a 2D array using PyCUDA and I need the x,y coordinates of each thread.

This question has been asked and answered here and here, but the linked solutions do not work for me for 2D data that exceeds my block size. Why?

Here's the SourceModule I'm using to help figure this out:

mod = SourceModule("""
  __global__ void kIndexTest(float *M, float *X, float*Y)
  {
    int bIdx = blockIdx.x + blockIdx.y * gridDim.x; 
    int idx = bIdx * (blockDim.x * blockDim.y) + (threadIdx.y * blockDim.x) + threadIdx.x;

    /* this array shows me the unique thread indices */
    M[idx] = idx;

    /* these arrays should capture x, y for each unique index */    
    X[idx] = (blockDim.x * blockIdx.x) + threadIdx.x;
    Y[idx] = (blockDim.y * blockIdx.y) + threadIdx.y;

  }
  """)

I'm executing the kernel like this:

gIndexTest = mod.get_function("kIndexTest")

dims = (8, 8)

M = gpuarray.to_gpu(numpy.zeros(dims, dtype=numpy.float32))
X = gpuarray.to_gpu(numpy.zeros(dims, dtype=numpy.float32))
Y = gpuarray.to_gpu(numpy.zeros(dims, dtype=numpy.float32))

gIndexTest(M, X, Y, block=(4, 4, 1), grid=(2, 2, 1))

M returns the correct index for all dimensions and all block/grid configurations I've tested. X and Y only return the correct coordinate values when the dimensions of X and Y are the same as the block dimensions, but do not return what I expect otherwise. For example, the above configuration yields:

M:
[[  0.   1.   2.   3.   4.   5.   6.   7.]
 [  8.   9.  10.  11.  12.  13.  14.  15.]
 [ 16.  17.  18.  19.  20.  21.  22.  23.]
 [ 24.  25.  26.  27.  28.  29.  30.  31.]
 [ 32.  33.  34.  35.  36.  37.  38.  39.]
 [ 40.  41.  42.  43.  44.  45.  46.  47.]
 [ 48.  49.  50.  51.  52.  53.  54.  55.]
 [ 56.  57.  58.  59.  60.  61.  62.  63.]] (correct)

X:
[[ 0.  1.  2.  3.  0.  1.  2.  3.]
 [ 0.  1.  2.  3.  0.  1.  2.  3.]
 [ 4.  5.  6.  7.  4.  5.  6.  7.]
 [ 4.  5.  6.  7.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  0.  1.  2.  3.]
 [ 0.  1.  2.  3.  0.  1.  2.  3.]
 [ 4.  5.  6.  7.  4.  5.  6.  7.]
 [ 4.  5.  6.  7.  4.  5.  6.  7.]] (not what I expect)

Y:
[[ 0.  0.  0.  0.  1.  1.  1.  1.]
 [ 2.  2.  2.  2.  3.  3.  3.  3.]
 [ 0.  0.  0.  0.  1.  1.  1.  1.]
 [ 2.  2.  2.  2.  3.  3.  3.  3.]
 [ 4.  4.  4.  4.  5.  5.  5.  5.]
 [ 6.  6.  6.  6.  7.  7.  7.  7.]
 [ 4.  4.  4.  4.  5.  5.  5.  5.]
 [ 6.  6.  6.  6.  7.  7.  7.  7.]] (not what I expect)

Here's what I actually expect from X and Y:

X:
[[ 0.  1.  2.  3.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  4.  5.  6.  7.]
 [ 0.  1.  2.  3.  4.  5.  6.  7.]] (only works when X dims = block dims)

Y:
[[ 0.  0.  0.  0.  0.  0.  0.  0.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.]
 [ 2.  2.  2.  2.  2.  2.  2.  2.]
 [ 3.  3.  3.  3.  3.  3.  3.  3.]
 [ 4.  4.  4.  4.  4.  4.  4.  4.]
 [ 5.  5.  5.  5.  5.  5.  5.  5.]
 [ 6.  6.  6.  6.  6.  6.  6.  6.]
 [ 7.  7.  7.  7.  7.  7.  7.  7.]] (only works when Y dims = block dims)

What do I not understand?

Here's my deviceQuery:

Device 0: "GeForce GT 755M"
  CUDA Driver Version / Runtime Version          7.5 / 6.5
  CUDA Capability Major/Minor version number:    3.0
  Total amount of global memory:                 1024 MBytes (1073283072 bytes)
  ( 2) Multiprocessors, (192) CUDA Cores/MP:     384 CUDA Cores
  GPU Clock rate:                                1085 MHz (1.09 GHz)
  Memory Clock rate:                             2500 Mhz
  Memory Bus Width:                              128-bit
  L2 Cache Size:                                 262144 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           1 / 0

Solution

  • Everything is working "as advertised". The problem here is that you are mixing incompatible indexing schemes together, which is producing inconsistent results.

    If you wanted X and Y to appear as you expected, you would need to compute idx in a different way:

      __global__ void kIndexTest(float *M, float *X, float*Y)
      {
        int xidx = (blockDim.x * blockIdx.x) + threadIdx.x;
        int yidx = (blockDim.y * blockIdx.y) + threadIdx.y;
        int idx = (gridDim.x * blockDim.x * yidx) + xidx;
    
        X[idx] = xidx;
        Y[idx] = yidx;
        M[idx] = idx;
      }
    

    in this scheme, xidxand yidx are the grid x and y coordinates, and idx is the global index, all assuming column major ordering (i.e. x is the fastest varying dimension).