I've got files with irradiance data measured every minute 24 hours a day. So if there is a day without any clouds on the sky the data shows a nice continuous bell curves. When looking for a day without any clouds in the data I always plotted month after month with gnuplot and checked for nice bell curves.
I was wondering If there's a python way to check, if the Irradiance measurements form a continuos bell curve. Don't know if the question is too vague but I'm simply looking for some ideas on that quest :-)
For a normal distribution, there are normality tests.
In short, we abuse some knowledge we have of what normal distributions look like to identify them.
The kurtosis of any normal distribution is 3. Compute the kurtosis of your data and it should be close to 3.
The skewness of a normal distribution is zero, so your data should have a skewness close to zero
More generally, you could compute a reference distribution and use a Bregman Divergence, to assess the difference (divergence) between the distributions. bin your data, create a histogram, and start with Jensen-Shannon divergence.
With the divergence approach, you can compare to an arbitrary distribution. You might record a thousand sunny days and check if the divergence between the sunny day and your measured day is below some threshold.