I would like to use a different KDE method than stats::density
which is used by stat_density
/geom_density
to plot a KDE for a distrubtion. How should I go about this?
I realized that this can be done by extending ggplot2
with ggproto
. The ggproto
vignette has an example that can be adapted pretty easily:
StatDensityCommon <- ggproto("StatDensityCommon", Stat,
required_aes = "x",
setup_params = function(data, params) {
if (!is.null(params$bandwidth))
return(params)
xs <- split(data$x, data$group)
bws <- vapply(xs, bw.nrd0, numeric(1))
bw <- mean(bws)
message("Picking bandwidth of ", signif(bw, 3))
params$bandwidth <- bw
params
},
compute_group = function(data, scales, bandwidth = 1) {
### CUSTOM FUNCTION HERE ###
d <- locfit::density.lf(data$x) #FOR EXAMPLE
data.frame(x = d$x, y = d$y)
}
)
stat_density_common <- function(mapping = NULL, data = NULL, geom = "line",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, bandwidth = NULL,
...) {
layer(
stat = StatDensityCommon, data = data, mapping = mapping, geom = geom,
position = position, show.legend = show.legend, inherit.aes = inherit.aes,
params = list(bandwidth = bandwidth, na.rm = na.rm, ...)
)
}
ggplot(mpg, aes(displ, colour = drv)) + stat_density_common()