# pseudo code:
myPeriod.contains(myTimestamp)
I found the lack of such function in pandas quite surprising. Am I missing something here?
You can try isin
if you have multiple values:
print df.index
PeriodIndex(['2015-11'], dtype='int64', name=u'', freq='M')
d = "2015-09-01"
d1 = "2015-10-01"
print df.index.isin([pd.to_datetime(d).to_period('M'), pd.to_datetime(d1).to_period('M')])
[False]
d = "2015-11-01"
d1 = "2015-11-01"
print df.index.isin([pd.to_datetime(d).to_period('M'), pd.to_datetime(d1).to_period('M')])
[ True]
If you want compare only one datetime
, easier is use (thanks maxymoo):
d = "2015-09-01"
print df.index == pd.to_datetime(d).to_period('M')
[False]
d = "2015-11-01"
print df.index == pd.to_datetime(d).to_period('M')
[True]
Or with Series
:
print df.a
0 2015-11
Name: a, dtype: object
d = "2015-09-01"
d1 = "2015-10-01"
print df.a.isin([pd.to_datetime(d).to_period('M'), pd.to_datetime(d1).to_period('M')]).values
[False]
d = "2015-11-01"
d1 = "2015-11-01"
print df.a.isin([pd.to_datetime(d).to_period('M'), pd.to_datetime(d1).to_period('M')]).values
[ True]