I'm quite new to python world. Also, I'm not a statistician. I'm in the need to implementing mathematical models developed by mathematicians in a computer science programming language. I've chosen python after some research. I'm comfortable with programming as such (PHP/HTML/javascript).
I have a column of values that I've extracted from a MySQL database & in need to calculate the below:
The array of values looks similar to the one below ( I've populated sample data)-
data = [3,3,3,3,3,3,3,9,12,6,3,3,3,3,9,21,3,12,3,6,3,30,12,6,3,3,24,30,3,3,3,12,3,3,3,3,3,3,3,6,9,3,3,3,3,3,3,3,3,3,3,3,3,33,3,3,3,6,3,3,6,6,15,3,3,3,3,6,3,3,3,3,3,3,3,3,12,12,3,3,3,3,3,3,78,9,12,3,6,3,15,6,3,3,3,30,3,6,78,3,9,9,3,78,3,3,3,3,3,12,15,3,3,78,3,3,33,78,15,9,3,3,21,6,3,6,30,6,6,3,3,3,3,12,3,3,3,3,3,12,3,3,3,3,3,3,3,3,3,3,3,3,12,6,3,3,9,3,3,12,3,3,3,3,6,3,3,6,3,3,18,6,3,3,3,3,3,6,3,3,3,3,3,3,3,3,9,21,3,9,3,3,12,12,3,3,15,30,3,12,3,3,6,3,3,3,9,9,6,6,3,3,27,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,12,6,3,3,3,3,30,3,3,3,3,6,18,24,6,3,3,42,3,3,6,3,15,3,3,3,3,9,3,60,81,54,3,9,3,3,6,3,6,3,3,3,3,6,3,3,3,33,24,3,3,3,3,3,3,3,3,3,3,3,3,3,93,3,3,21,3,3,3,3,6,6,30,3,3,3,3,6,3,9,3,3,6,3,6,3,3,3,39,9,30,6,45,3,3,3,3,3,24,12,3,6,3,78,3,3,3,3,3,3,3,3,3,3,3,9,6,3,3,3,6,15,3,78,3,3,30,3,3,3,33,24,3,3,6,3,3,3,6,3,3,3,12,15,3,3,3,21,3,3,3,3,9,6,3,6,3,3,3,3,6,6,3,15,6,9,3,3,18,3,3,3,3,3,3,3,3,21,3,3,6,3,3,3,3,3,3,12,3,3,3,3,3,3,6,21,12,3,6,9,3,3,3,3,9,15,3,6,78,6,6,3,9,3,9,3,6,3,3,3,24,3,3,6,3,3,27,3,6,3,3,3,3,3,3,3,3,3,3,3,3,21,3,9,6,6,9,27,30,3,3,9,12,6,3,3,12,9,3,21,3,6,9,9,3,3,3,3,9,6,3,3,6,3,3,3,3,3,6,3,6,3,3,3,24,6,3,3,3,3,3,3,3,3,3,3,18,3,3,3,3,3,9,6,3,3,3,18,3,9,3,3,15,9,12,3,18,3,6,3,3,3,6,3,3,3,3,3,3,3,21,9,15,3,3,3,21,3,3,3,3,3,6,9,3,3,21,6,3,3,15,3,18,3,3,21,3,21,3,9,3,6,21,3,9,15,3,69,21,3,3,3,9,3,3,3,12,3,3,9,3,3,27,3,3,9,3,9,3,3,3,3,3,30,3,12,21,18,27,3,3,12,3,6,3,30,3,21,9,15,6,3,3,3,15,9,12,12,33,3,3,30,3,6,6,21,3,3,12,3,3,6,51,3,3,3,3,12,3,6,3,9,78,21,3,3,21,18,6,12,3,3,3,21,9,6,3,3,3,3,3,3,6,3,6,27,3,3,3,3,3,3,12,3,3,3,3,6,3,18,3,3,15,3,3,18,9,6,3,3,24,3,6,12,30,3,12,24,3,3,3,9,3,12,27,3,3,6,3,9,3,9,3,15,3,6,3,3,9,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,6,3,3,3,9,15,3,3,3,3,9,3,6,3,3,3,3,27,3,6,3,3,3,3,3,3,3,3,3,3,9,3,3,3,12,3,3,3,27,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,9,3,3,3,3,3,3,15,3,3,3,3,3,3,12,3,6,6,3,3,3,3,6,3,3,6,3,3,3,3,3,6,3,3,3,3,6,12,6,3,3,3,3,6,3,3,3,3,3,3,3,3,3,6,3,6,3,3,6,3,3,6,3,3,3,6,6,6,3,3,27,3,3,3,3,3,3,3,27,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,6,3,3,3,6,3,54,75,3,57,3,6,27,18,3,3,3,3,27,3,3,3,3,3,9,3,27,3,3,6,6,30,3,3,6,3,3,3,6,15,3,6,3,3,6,3,3,3,3,6,3,3,27,9,3,18,3,3,6,6,3,9,3,3,3,6,3,3,3,3,3,3,3,3,6,3,3,3,6,3,3,6,3,3,3,3,6,6,3,3,3,6,6,3,3,3,3,3,3,3,6,3,3,6,3,3,3,3,3,6,3,18,3,3,6,3,6,3,3,3,3,3,3,3,3,6,15,3,6,15,6,3,3,3,3,3,3,3,3,3,3,3,3,6,3,6,3,3,6,12,3,3,6,3,3,6,3,3,3,3,3,27,3,3,3,3,9,3,27,3,3,27,3,3,3,3,3,3,9,6,3,9,3,6,3,3,6,3,6,3,3,3,6,3,3,6,3,18,3,3,3,9,6,3,3,3,3,3,6,3,6,6,3,18,27,3,3,3,6,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,21,3,3,3,3,6,9,3,3,3,3,3,3,6,3,6,3,3,3,3,3,6,3,6,3,3,3,3,3,18,3,3,18,3,3,3,3,6,3,3,3,18,6,3,3,3,3,3,3,3,6,3,3,3,6,3,3,3,3,3,3,6,3,3,3,3,3,3,6,3,3,6,3,6,3,3,3,6,3,3,6,3,3,3,3,6,3,3,3,6,3,3,3,3,3,3,3,6,6,3,3,3,3,3,6,3,6,3,54,3,6,3,6,6,6,3,3,3,3,3,3,6,3,3,6,3,3,6,3,3,9,12,3,6,3,3,3,3,3,6,6,3,3,3,3,6,3,6,3,3,3,3,3,3,3,3,6,3,3,3,3,3,6,3,3,3,3,3,12,3,3,6,9,27,21,3,3,3,3,3,21,6,3,3,3,3,3,3,3,3,3,3,3,6,3,3,12,3,3,3,3,3,3,3,3,3,3,3,6,3,3,6,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,9,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,6,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,6,3,3,3,3,6,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,6,3,3,3,3,3,3,6,6,3,3,3,3,3,3,6,3,3,6,3,3,3,6,3,3,3,3,6,6,3,6,3,6,6,3,9,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,6,3,3,3,9,9,3,3,3,3,3,6,3,3,3,3,6,3,3,3,3,6,3,3,3,3,3,6,3,6,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,6,3,3,6,3,3,3,3,3,3,3,6,3,3,3,135,3,9,3,3,6,9,3,3,3,6,3,3,3,3,6,3,3,6,6,3,3,3,3,3,3,3,3,3,3,3,3,6,6,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,6,3,3,3,135,3,3,3,6,3,3,3,3,6,6,3,3,69,87,57,9,3,3,3,12,3,6,3,3,3,6,3,3,3,3,3,3,3,3,3,3,6,9,12,3,3,3,3,3,3,3,3,6,3,3,9,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,9,3,3,3,3,12,3,3,33,3,6,3,3,3,3,3,3,6,3,6,3,3,6,3,3,3,6,3,6,3,3,6,3,3,3,6,3,3,6,3,3,3,6,3,3,3,3,9,3,3,6,6,3,3,3,6,6,3,3,3,3,3,3,6,3,3,3,3,6,3,3,3,6,3,18,3,6,3,3,3,3,9,3,3,3,3,3,3,6,3,3,6,3,3,3,3,3,135,3,9,3,3,3,3,3,3,3,3,6,6,3,6,6,3,3,6,3,3,3,6,6,3,3,3,3,6,9,3,3,3,3,3,3,6,6,3,3,3,3,3,3,135,3,3,3,6,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,6,6,6,3,3,3,6,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,9,6,3,3,3,9,3,3,3,3,9,3,3,3,3,3,3,3,3,3,9,3,6,6,3,6,3,3,6,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,9,3,24,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,6,3,3,3,3,3,3,6,3,135,3,3,3,3,3,3,6,6,3,3,3,3,3,3,3,3,6,3,3,3,3,3,9,6,3,3,3,9,3,3,3,3,3,3,6,3,3,6,3,9,3,3,3,6,3,3,3,6,6,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,9,3,3,3,3,3,9,6,3,9,3,6,3,3,21,9,3,3,3,6,3,3,3,3,6,3,3,3,3,9,3,3,3,3,3,3,3,135,3,6,6,6,3,6,3,3,9,6,6,3,3,3,3,3,3,9,3,6,3,3,3,3,3,3,3,6,9,6,3,3,6,3,6,6,3,3,3,3,6,3,6,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,6,3,6,3,12,3,24,3,3,3,3,3,3,21,3,3,3,3,3,3,3,6,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,15,3,3,3,3,3,3,3,6,3,3,6,6,3,3,9,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,9,3,3,3,6,3,3,3,6,3,6,3,3,3,3,3,3,3,3,3,12,3,3,3,3,3,3,6,3,6,6,3,3,3,6,3,3,6,3,3,3,3,9,6,3,3,3,6,9,3,3,3,6,9,3,6,3,3,3,3,3,3,6,3,3,3,3,6,6,3,3,3,3,3,3,3,3,3,3,9,15,3,3,3,6,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,12,3,3,3,6,6,6,3,3,3,6,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,12,12,6,3,3,3,3,3,3,3,3,3,9,6,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,6,3,3,3,3,6,3,3,3,6,3,3,3,3,3,3,3,6,3,3,3,6,3,3,6,3,3,12,3,3,3,6,3,3,3,3,564,84,3,60,6,15,3,3,3,3,3,6,3,3,3,3,3,3,3,9,3,3,3,3,3,3,3,3,3,3,3,6,9,3,3,3,3,3,9,3,3,3,3,3,12,6,3,3,3,3,3,3,3,3,6,3,3,3,3,9,57,3,6,3,6,3,3,6,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,9,3,3,3,3,6,3,3,3,6,12,3,6,3,3,3,3,3,3,3,3,6,3,6,3,3,3,6,3,3,6,3,3,36,3,3,6,6,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,12,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,6,3,3,6,3,6,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,12,6,3,3,3,3,3,3,3,12,3,3,3,6,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,9,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,12,3,3,3,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,9,3,3,3,3,3,3,3,9,3,3,3,3,3,3,3,3,3,6,3,3,3,3,3,3,3,3,3,3,6,3,3,3,27,3,3,6,3,3,3,3,3,6,3,3,3,3,6,3,3,9,3,3,3,12,3,3,3,3,3,6,9,3,6,3,3]
I've looked around & found quite a bit about cumulative distribution as here (These have the mu & sigma values ready anyway which isn't the case in my scenario). I'm not too sure if cumulative normal distribution & normal distribution are the same. Could I please get some pointers on how to get started with this please?
I'd very much appreciate any help here please.
A distribution and the cumulative distribution are not the same - the latter is the integral of the former. If the normal distribution looks like a "bell", the cumulative normal distribution looks like a gentle "step" function.
E.g., for the following "bells" you'd get the following "steps"
If you have an array data
, the following will fit it to a normal distribution using scipy.stats.norm
:
import numpy as np
from scipy.stats import norm
mu, std = norm.fit(data)
This will return the mean and standard deviation, the combination of which define a normal distribution.