I tried to instantiate a coo_matrix
using another matrix. When I tried to print the coo_matrix
, the output is:
(1, 9) 1.0
(1, 10) 1.0
(1, 11) 1.0
(1, 25) 1.0
(1, 47) 1.0
(2, 1) 1.0
(2, 7) 1.0
(2, 11) 3.0
(2, 12) 1.0
(2, 13) 1.0
(2, 15) 2.0
(2, 19) 1.0
(2, 42) 1.0
(3, 0) 1.0
(4, 20) 1.0
(4, 22) 1.0
(4, 24) 1.0
: :
(45, 0) 1.0
(45, 7) 1.0
(45, 14) 2.0
(45, 20) 1.0
(45, 26) 1.0
(45, 38) 1.0
(45, 40) 1.0
(46, 11) 1.0
(46, 19) 1.0
(46, 36) 1.0
(46, 41) 1.0
(46, 47) 1.0
How do I print the complete coo_matrix
? I tried using set_printoptions(threshold = 'nan')
but it doesn't work on this.
You can convert your sparse matrix to a dense matrix using .todense()
method:
print(my_coo_matrix.todense())
Edit: Your question sounded like you want to print the zero valued elements too, however if you only want to print nonzero elements, you can iterate the matrix manually:
for row, col, value in zip(my_coo_matrix.row, my_coo_matrix.col, my_coo_matrix.data):
print "({0}, {1}) {2}".format(row, col, value)