Search code examples
python-2.7numpyscipypdist

Calculate two dimensional pairwise distance on a large numpy three dimensional array


I have a numpy array of 3 million points in the form of [pt_id, x, y, z]. The goal is to return all pairs of points that have an Euclidean distance two numbers min_d and max_d.

The Euclidean distance is between x and y and not on the z. However, I'd like to preserve the array with pt_id_from, pt_id_to, distance attributes.

I'm using scipy's dist to calculate the distances:

import scipy.spatial.distance
coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
                       ['pt2', 2479539.000, 7287455.000, 4.900],
                       ['pt3', 2479626.000, 7287458.000, 10.000],
                       ['pt4', 2484097.000, 7292784.000, 8.800],
                       ['pt5', 2484106.000, 7293079.000, 7.300],
                       ['pt6', 2484095.000, 7292891.000, 11.100]])

dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
np.savetxt('test.out', scipy.spatial.distance.squareform(dists), delimiter=',')

What should I do to return an array of form: [pt_id_from, pt_id_to, distance]?


Solution

  • Well, ['pt1', 'pt2', distance_as_number] is not exactly possible. The closest you can get with mixed datatypes is a structured array but then you can't do things like result[:2,0]. You'll have to index field names and array indices separately like: result[['a','b']][0].

    Here is my solution:

    import numpy as np
    import scipy.spatial.distance
    
    coords_arr = np.array([['pt1', 2452130.000, 7278106.000, 25.000],
                           ['pt2', 2479539.000, 7287455.000, 4.900],
                           ['pt3', 2479626.000, 7287458.000, 10.000],
                           ['pt4', 2484097.000, 7292784.000, 8.800],
                           ['pt5', 2484106.000, 7293079.000, 7.300],
                           ['pt6', 2484095.000, 7292891.000, 11.100]])
    
    dists = scipy.spatial.distance.pdist(coords_arr[:,1:3], 'euclidean')
    
    # Create a shortcut for `coords_arr.shape[0]` which is basically
    # the total amount of points, hence `n`
    n = coords_arr.shape[0]
    
    # `a` and `b` contain the indices of the points which were used to compute the
    # distances in dists. In this example:
    # a = [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4]
    # b = [1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5]
    a = np.arange(n).repeat(np.arange(n-1, -1, -1))
    b = np.hstack([range(x, n) for x in xrange(1, n)])
    
    min_d = 1000
    max_d = 10000
    
    # Find out which distances are in range.
    in_range = np.less_equal(min_d, dists) & np.less_equal(dists, max_d)
    
    # Define the datatype of the structured array which will be the result.
    dtype = [('a', '<f8', (3,)), ('b', '<f8', (3,)), ('dist', '<f8')]
    
    # Create an empty array. We fill it later because it makes the code cleaner.
    # Its size is given by the sum over `in_range` which is possible
    # since True and False are equivalent to 1 and 0.
    result = np.empty(np.sum(in_range), dtype=dtype)
    
    # Fill the resulting array.
    result['a'] = coords_arr[a[in_range], 1:4]
    result['b'] = coords_arr[b[in_range], 1:4]
    result['dist'] = dists[in_range]
    
    print(result)
    
    # In caste you don't want a structured array at all, this is what you can do:
    result = np.hstack([coords_arr[a[in_range],1:],
                        coords_arr[b[in_range],1:],
                        dists[in_range, None]]).astype('<f8')
    print(result)
    

    The structured array:

    [([2479539.0, 7287455.0, 4.9], [2484097.0, 7292784.0, 8.8], 7012.389393067102)
     ([2479539.0, 7287455.0, 4.9], [2484106.0, 7293079.0, 7.3], 7244.7819152821985)
     ([2479539.0, 7287455.0, 4.9], [2484095.0, 7292891.0, 11.1], 7092.75912462844)
     ([2479626.0, 7287458.0, 10.0], [2484097.0, 7292784.0, 8.8], 6953.856268287403)
     ([2479626.0, 7287458.0, 10.0], [2484106.0, 7293079.0, 7.3], 7187.909362255481)
     ([2479626.0, 7287458.0, 10.0], [2484095.0, 7292891.0, 11.1], 7034.873843929257)]
    

    The ndarray:

    [[2479539.0, 7287455.0, 4.9, 2484097.0, 7292784.0, 8.8, 7012.3893],
     [2479539.0, 7287455.0, 4.9, 2484106.0, 7293079.0, 7.3, 7244.7819],
     [2479539.0, 7287455.0, 4.9, 2484095.0, 7292891.0, 11.1, 7092.7591],
     [2479626.0, 7287458.0, 10.0, 2484097.0, 7292784.0, 8.8, 6953.8562],
     [2479626.0, 7287458.0, 10.0, 2484106.0, 7293079.0, 7.3, 7187.9093],
     [2479626.0, 7287458.0, 10.0, 2484095.0, 7292891.0, 11.1, 7034.8738]]