Search code examples
haskellnon-exhaustive-patterns

haskell: negation normal form's function get "Non-exhaustive pattern" exception


-- | data type definition of WFF: well formed formula
data Wff = Var String 
        | Not Wff
        | And Wff Wff 
        | Or Wff Wff
        | Imply Wff Wff

-- | Negation norm form  nnf function
--   precondition: φ is implication free
--   postcondition: NNF (φ) computes a NNF for φ
nnf :: Wff -> Wff
nnf (Var p) = Var p
nnf (Not (Not p)) = (nnf p)
nnf (And p q) = And (nnf p) (nnf q)
nnf (Or p q) = Or (nnf p) (nnf q)
nnf (Not (And p q)) = Or (nnf(Not p)) (nnf(Not q))
nnf (Not (Or p q)) = And (nnf(Not p)) (nnf(Not q))

Test case: ¬(pQ)

(*** Exception:: Non-exhaustive patterns in function nnf

However, if I add nnf (Not p) = Not (nnf p) into the function, it will show

Pattern match(es) are overlapped
In an equation for ‘nnf’:
    nnf (Not (Not p)) = ...
    nnf (Not (And p q)) = ...
    nnf (Not (Or p q)) = ...

I am wondering what I am doing wrong?


Solution

  • You're simply inserting the line at the wrong place. nnf (Not p) = ... is a catch-all for negations. If you then later add other clauses that deal with more specific negations like Not (And p q), they can't possibly trigger anymore.

    The catch-all clause needs to come last, i.e.

    nnf (Var p) = Var p
    nnf (Not (Not p)) = (nnf p)
    nnf (And p q) = And (nnf p) (nnf q)
    nnf (Or p q) = Or (nnf p) (nnf q)
    nnf (Not (And p q)) = Or (nnf $ Not p) (nnf $ Not q)
    nnf (Not (Or p q)) = And (nnf $ Not p) (nnf $ Not q)
    nnf (Not p) = Not $ nnf p