I have a simple apply
function that I execute on some of the columns. But, it keeps getting tripped up by NaN
values in pandas
.
input_data = np.array(
[
[random.randint(0,9) for x in range(2)]+['']+['g'],
[random.randint(0,9) for x in range(3)]+['g'],
[random.randint(0,9) for x in range(3)]+['a'],
[random.randint(0,9) for x in range(3)]+['b'],
[random.randint(0,9) for x in range(3)]+['b']
]
)
input_df = pd.DataFrame(data=input_data, columns=['B', 'C', 'D', 'label'])
I have a simple lambda like this:
input_df['D'].apply(lambda aCode: re.sub('\.', '', aCode) if not np.isnan(aCode) else aCode)
And it gets tripped up by the NaN values:
File "<pyshell#460>", line 1, in <lambda>
input_df['D'].apply(lambda aCode: re.sub('\.', '', aCode) if not np.isnan(aCode) else aCode)
TypeError: Not implemented for this type
So, I tried just testing for nan values that Pandas adds:
np.isnan(input_df['D'].values[0])
np.isnan(input_df['D'].iloc[0])
Both get the same error.
I do not know how to test for nan values other than np.isnan
. Is there an easier way to do this? Thanks.
your code fails because your first entry is an empty string and np.isnan
doesn't understand empty strings:
In [55]:
input_df['D'].iloc[0]
Out[55]:
''
In [56]:
np.isnan('')
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-56-a9f139a0c5b8> in <module>()
----> 1 np.isnan('')
TypeError: Not implemented for this type
pd.notnull
does work:
In [57]:
import re
input_df['D'].apply(lambda aCode: re.sub('\.', '', aCode) if pd.notnull(aCode) else aCode)
Out[57]:
0
1 3
2 3
3 0
4 3
Name: D, dtype: object
However, if you just want to replace something then just use .str.replace
:
In [58]:
input_df['D'].str.replace('\.','')
Out[58]:
0
1 3
2 3
3 0
4 3
Name: D, dtype: object