I have a program that visualizes triangular meshes and allows the users to draw on the meshes using a pen. I want to have a "snapping" mode in my system. The snapping mode performs drawing corrections for the user in the sense that the user-drawn lines are snapped to the nearest edge (or the silhouette) of that part of the mesh.
I'm looking for an algorithm that compute the edges visible on the mesh from a given point of view. By edges, I'm referring to the outlines of the shape: corner points and the lines between them (similar to the definition of an edge in computer vision/image processing -- such as Canny edges).
So far I've thought of two approaches for this:
Edge detection: so far I've only found this paper. Their method is understandable, yet the implementation is not trivial (due to tensor computations and some ambiguity in their explanations). The problem with this approach is that it produces "edge strength values" which is a value in the range [0, 1] for every vertex. The value of 1 indicates an edge vertex with a high confidence. This introduces extra thresholding parameters in the system which I'd rather not have. Their output looks like this (range [0, 1] scaled to [0, 65535]):
Rendering or non-photorealistic methods such as the one asked in this question or this paper. They seem to be able to create the silhouette that I'm after as can be seen below:
I'm not a graphics expert and as of yet I don't know whether their methods can be used for computation of the feature lines rather than rendering.
I was wondering if anybody has any ideas about a good algorithm for what I want to do. Since the system is very interactive, the performance is important. The snapping feature does not have to be enabled all the time (therefore, if the method is computationally expensive, some delay in when "snapping enabled" mode is toggled can be tolerated while the algorithm is computing the edges.) Also, if you know of any implementation (preferably open source), I'd be grateful if you could share it with me.
Since posting the question, something else came into my head. Since 2D edge detection is a very well-studied problem, one way of tackling the problem is performing 2D edge detection on the projection image of the mesh.
In other words, given a specific view of the mesh, one could generate a 2D image. A 2D edge detection algorithm (such as Canny edge detector) could then be run on the 2D image and the results can be back-projected to 3D to determine the silhouettes of the mesh in question. One possible advantage of this is simplicity!
Edit (2017):
Even though I moved away from this, I returned to this problem again for a different purpose. To anybody else looking into this problem: there is a paper that talks about various contours from meshes that's worth reading (the paper is "Suggestive Contours for Conveying Shape" by DeCarlo et al.).
Working implementation of the methods discussed in the paper are available here.