I'm using ggtern to plot a large dataset in a form of tertiary plot (see below an example).
Till a certain data-size everything was perfect, as I was using geom_density_tern(). As I want to visualize a far more complicated dataset loading all of it and rendering with ggplot becomes impossible (limitation on the memory side). I thought that maybe there could be a workaround by imputing the result of kde2d matrix calculated seperately. And that's where I'm stuck. I would like to know if it is possible to do it anyhow in ggtern?
In any case I add a minimal case of the data structure and plotting that I use at this moment.
require(ggplot2)
require(ggtern)
set.seed(1)
mydata <- data.frame(
x = runif(100, min = 0.25, max = 0.5),
y = runif(100, min = 0.1, max = 0.4),
z = runif(100, min = 0.5, max = 0.7))
plot <- ggtern() +
theme_bw() +
theme_hidetitles() +
geom_density_tern(data = mydata,
aes(x = x, y = y, z = z, alpha = ..level.. ),
size = 0.1, linetype = "solid", fill = "blue")+
geom_point(data = mydata,
aes(x = x, y = y, z = z), alpha = 0.8, size = 1)
plot
Those extra lines reproduce the density plot in the ternary coordination system:
library(MASS)
dataTern = transform_tern_to_cart(mydata$x,mydata$y,mydata$z)
dataTernDensity <- kde2d(x=dataTern$x, y=dataTern$y, lims = c(range(0,1), range(0,1)), n = 400)
image(dataTernDensity$x, dataTernDensity$y, dataTernDensity$z)
points(dataTern$x, dataTern$y, pch = 20, cex = 0.1)
segments(x0 = 0, y0 = 0, x1 = 0.5, y1 = 1, col= "white")
segments(x0 = 0, y0 = 0, x1 = 1, y1 = 0, col= "white")
segments(x0 = 0.5, y0 = 1, x1 = 1, y1 = 0, col= "white")
And obtaining this graph:
Thanks in advance for any help!
We can solve this using the code which is usually used behind the scenes in the Stat. Having just released ggtern 2.0.1
, published on CRAN a couple of days ago after completely re-writing the package to be compatible with ggplot2 2.0.0
, I am familiar with an approach that may suit your needs. Incidentally, for you interest, a summary of the new functionality in ggtern 2.0.X
can be found here:
Below please find a solution and working code for your problem, which is a density estimate calculated on isometric log-ratio space.
#Required Libraries
library(ggtern)
library(ggplot2)
library(compositions)
library(MASS)
library(scales)
set.seed(1) #For Reproduceability
mydata <- data.frame(
x = runif(100, min = 0.25, max = 0.5),
y = runif(100, min = 0.1, max = 0.4),
z = runif(100, min = 0.5, max = 0.7))
#VARIABLES
nlevels = 7
npoints = 200
expand = 0.5
#Prepare the data, put on isometric logratio basis
df = data.frame(acomp(mydata)); colnames(df) = colnames(mydata)
data = data.frame(ilr(df)); colnames(data) = c('x','y')
#Prepare the Density Estimate Data
h.est = c(MASS::bandwidth.nrd(data$x), MASS::bandwidth.nrd(data$y))
lims = c(expand_range(range(data$x),expand),expand_range(range(data$y),expand))
dens = MASS::kde2d(data$x,data$y,h=h.est,n=npoints,lims=lims)
#-------------------------------------------------------------
#<<<<< Presumably OP has data at this point,
# and so the following should achieve solution
#-------------------------------------------------------------
#Generate the contours via ggplot2's non-exported function
lines = ggplot2:::contour_lines(data.frame(expand.grid(x = dens$x, y = dens$y),
z=as.vector(dens$z),group=1),
breaks=pretty(dens$z,n=nlevels))
#Transform back to ternary space
lines[,names(mydata)] = data.frame(ilrInv(lines[,names(data)]))
#Render the plot
ggtern(data=lines,aes(x,y,z)) +
theme_dark() +
theme_legend_position('topleft') +
geom_polygon(aes(group=group,fill=level),colour='grey50') +
scale_fill_gradient(low='green',high='red') +
labs(fill = "Density",
title = "Example Manual Contours from Density Estimate Data")