I use the kalmanfilter implementation of the apache commons math library to improve the accuracy of my indoor positioning framework. I think I got the matrices setup correctly for 2D positioning while the state consists of the position(x,y) and velocity(vx, vy). I set the state "x" with the new incoming position in the "estimatePosition()" method. The filter seems to work: Here is the output from my little JUnit test which calls the method estimatePosition() in a loop with the mocked position [20,20]:
I wonder why the initial Position seems to be at [0,0]. Where do I have to set the initial Position of [20,20]?
public class Kalman {
//A - state transition matrix
private RealMatrix A;
//B - control input matrix
private RealMatrix B;
//H - measurement matrix
private RealMatrix H;
//Q - process noise covariance matrix (error in the process)
private RealMatrix Q;
//R - measurement noise covariance matrix (error in the measurement)
private RealMatrix R;
//x state
private RealVector x;
// discrete time interval (100ms) between to steps
private final double dt = 0.1d;
// position measurement noise (1 meter)
private final double measurementNoise = 1d;
// constant control input, increase velocity by 0.1 m/s per cycle
private RealVector u = new ArrayRealVector(new double[] { 0.1d });
//private RealVector u = new ArrayRealVector(new double[] { 10d });
private KalmanFilter filter;
public Kalman(){
//A and B describe the physic model of the user moving specified as matrices
A = new Array2DRowRealMatrix(new double[][] {
{ 1d, 0d, dt, 0d },
{ 0d, 1d, 0d, dt },
{ 0d, 0d, 1d, 0d },
{ 0d, 0d, 0d, 1d }
});
B = new Array2DRowRealMatrix(new double[][] {
{ Math.pow(dt, 2d) / 2d },
{ Math.pow(dt, 2d) / 2d },
{ dt},
{ dt }
});
//only observe first 2 values - the position coordinates
H = new Array2DRowRealMatrix(new double[][] {
{ 1d, 0d, 0d, 0d },
{ 0d, 1d, 0d, 0d },
});
Q = new Array2DRowRealMatrix(new double[][] {
{ Math.pow(dt, 4d)/4d, 0d, Math.pow(dt, 3d)/2d, 0d },
{ 0d, Math.pow(dt, 4d)/4d, 0d, Math.pow(dt, 3d)/2d },
{ Math.pow(dt, 3d)/2d, 0d, Math.pow(dt, 2d), 0d },
{ 0d, Math.pow(dt, 3d)/2d, 0d, Math.pow(dt, 2d) }
});
R = new Array2DRowRealMatrix(new double[][] {
{ Math.pow(measurementNoise, 2d), 0d },
{ 0d, Math.pow(measurementNoise, 2d) }
});
ProcessModel pm = new DefaultProcessModel(A, B, Q, x, null);
MeasurementModel mm = new DefaultMeasurementModel(H, R);
filter = new KalmanFilter(pm, mm);
}
/**
* Use Kalmanfilter to decrease measurement errors
* @param position
* @return
*/
public Position<Euclidean2D> esimatePosition(Position<Euclidean2D> position){
double[] pos = position.toArray();
// x = [ 0 0 0 0] state consists of position and velocity[pX, pY, vX, vY]
x = new ArrayRealVector(new double[] { pos[0], pos[1], 0, 0 });
// predict the state estimate one time-step ahead
filter.predict(u);
// x = A * x + B * u (state prediction)
x = A.operate(x).add(B.operate(u));
// z = H * x (measurement prediction)
RealVector z = H.operate(x);
// correct the state estimate with the latest measurement
filter.correct(z);
//get the corrected state - the position
double pX = filter.getStateEstimation()[0];
double pY = filter.getStateEstimation()[1];
return new Position2D(pX, pY);
}
}
The technical answer to your question is probably to set x
to the initial state in your Kalman()
constructor.
Practically speaking, when you initialize a Kalman filter, you will not always have an initial state that you know. In your own case, you happen to know that the initial position is 20,20
, but what should you put in your initial velocity estimate?
One common starting point is to initialize to 0
(or whatever a reasonable mean value is) and set initial P
to be "wide open". I don't see how P
is initialized in your code. You would set it to say that your initial position is 0,0
with very large uncertainty. That would cause initial measurements to make large adjustments to x
as P
converges to the steady state after many measurements.