The answer to this question has general application, but I will motivate it with the following example:
I have the following template class:
template <typename V>
class Collection
{
public:
struct id{};
struct name{};
// A collection parameterized by type V that is indexed by a string 'name'
// and a integer 'id'
// The type V must implement 'get_id()' and a 'get_name()' functions
typedef multi_index_container <
V,
indexed_by<
ordered_unique<
tag<id>, const_mem_fun<V, unsigned int, &V::get_id> >,
ordered_unique<
tag<name>, const_mem_fun<V, std::string, &V::get_name> >
>
> ni_collection;
>
I want to modify this template so that I can create a collection with the objects, their pointers or their references: Collection<Obj>
, Collection<std::unique_ptr<Obj>>
or Collection<Obj *>
.
How would I modify my template to achieve this?
--- UPDATE --- I had posted a related question here: Computing The Type Of A Function Pointer
Synthesizing the excellent answers in both places, I have finally achieved my original goal. Here are the details of my current implementation:
template <typename V>
class Collection
{
private:
// A type-level function that returns the undecorated type of the object
// So unrwap_object_type<Widget *> = Widget
// unwrap_object_type<std::unique_ptr<Widget>> = Widget
// unwrap_object_type<Widget> = Widget
template<typename T, typename = void>
struct unwrap_object_type { typedef T type; };
template <typename T>
struct unwrap_object_type<T *, void> { typedef T type; };
template<typename T>
struct unwrap_object_type<T,
typename std::conditional<false,
typename T::element_type, void>::type>
{
typedef typename T::element_type type;
};
////
// So that QHNETO_COLLECTION<Widget>, QHNETO_COLLECTION<Widet *>,
// and QHNETO_COLLECTION<std::unique_ptr<Widget>> are valid
typedef typename unwrap_object_type<V>::type W;
// Tags for the two indices (id and name) of the collection
struct id;
struct name;
// A collection parameterized by type V that is indexed by a string 'name'
// and a integer 'id'
// The type V must implement 'get_id()' and a 'get_name()' functions
typedef multi_index_container <
V,
indexed_by<
ordered_unique<
tag<id>,
const_mem_fun<W, unsigned int, &W::get_id> >,
ordered_unique<
tag<name>,
const_mem_fun<W, std::string, &W::get_name> >
>
> ni_collection;
ni_collection m_collection;
};
Elaborating on @sehe's answer: Boost.MultiIndex predefined key extractors handle dereferencing automatically (for instance, const_mem_fun<foo,bar,&foo::bar>
can be used as is with a multi_index_container
of foo*
s). You can take advantage of this capability and write the following (without any user-provided key extractor):
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/mem_fun.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <memory>
namespace bmi = boost::multi_index;
template<typename T>
struct remove_pointer{using type=T;};
template<typename T>
struct remove_pointer<T*>{using type=T;};
template<typename T>
struct remove_pointer<std::shared_ptr<T>>{using type=T;};
template <typename V> class Collection {
public:
struct id;
struct name;
using W=typename remove_pointer<V>::type;
typedef boost::multi_index_container<
V,
bmi::indexed_by<
bmi::ordered_unique<
bmi::tag<id>,
bmi::const_mem_fun<W, unsigned int, &W::get_id>
>,
bmi::ordered_unique<
bmi::tag<name>,
bmi::const_mem_fun<W,const std::string&, &W::get_name>
>
>
> ni_collection;
};
struct Demo {
unsigned _id;
std::string _name;
Demo(unsigned _id,const std::string& _name):_id(_id),_name(_name){}
unsigned get_id() const { return _id; }
std::string const& get_name() const { return _name; }
};
int main() {
Collection<Demo>::ni_collection works{ { 42, "LTUAE" }, { 4, "PI" } };
Collection<Demo *>::ni_collection also_works{ new Demo{ 42, "LTUAE" }, new Demo{ 4, "PI" } };
Collection<std::shared_ptr<Demo>>::ni_collection this_too{ std::make_shared<Demo>( 42, "LTUAE" ), std::make_shared<Demo>( 4, "PI" ) };
}
The only tricky part is that const_mem_fun
uses W
=std::remove_pointer<V>::type
(i.e. V
if V
is a plain type or the type it points to if it's a pointer).
Edited: Instead of std::remove_pointer<V>
, the updated code uses a handcrafted remove_pointer
template class partially specialized to understand T*
and std::shared_ptr<T>
; you can extend this to cover, for instance, std::unique_ptr<T>
or any other smart pointer class you need to cater to.