I am trying to find a way in R to calculate variable importance for a single tree of a random forest or a conditional random forest.
A good starting point is the rpart:::importance
command which calculates a measure of variable importance for rpart
trees:
> library(rpart)
> rp <- rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)
> rpart:::importance(rp)
Start Age Number
8.198442 3.101801 1.521863
The randomForest::getTree
command is the standard tool to extract the structure of a tree from a randomForest
object, but it returns a data.frame
:
library(randomForest)
rf <- randomForest(Kyphosis ~ Age + Number + Start, data = kyphosis)
tree1 <- getTree(rf, k=1, labelVar=TRUE)
str(tree1)
'data.frame': 29 obs. of 6 variables:
$ left daughter : num 2 4 6 8 10 12 0 0 14 16 ...
$ right daughter: num 3 5 7 9 11 13 0 0 15 17 ...
$ split var : Factor w/ 3 levels "Age","Number",..: 2 3 1 2 3 3 NA NA 3 1 ...
$ split point : num 5.5 8.5 78 3.5 14.5 7.5 0 0 3.5 75 ...
$ status : num 1 1 1 1 1 1 -1 -1 1 1 ...
erce$ prediction : chr NA NA NA NA ...
A solution would be to use a as.rpart
command to coerce tree1
to an rpart
object. Unfortunately,I am not aware of this command in any R package.
Using the party
package I found a similar problem. The varimp
command works with cforest
objects and not with a single tree.
library(party)
cf <- cforest(Kyphosis ~ Age + Number + Start, data = kyphosis)
ct <- party:::prettytree(cf@ensemble[[1]], names(cf@data@get("input")))
tree2 <- new("BinaryTree")
tree2@tree <- ct
tree2@data <- cf@data
tree2@responses <- cf@responses
tree2@weights <- cf@initweights
varimp(tree2)
Error in varimp(tree2) :
no slot of name "initweights" for this object of class "BinaryTree"
Any help is appreciated.
Starting from the suggestion of @Alex, I worked on the party:::varimp
. This command calculates standard (mean decrease accuracy) and conditional variable importance (VI) for cforest
and can be easily modified to calculate VI for each single tree of the forest.
set.seed(12345)
y <- cforest(score ~ ., data = readingSkills,
control = cforest_unbiased(mtry = 2, ntree = 10))
varimp_ctrees <- function (object, mincriterion = 0, conditional = FALSE,
threshold = 0.2, nperm = 1, OOB = TRUE, pre1.0_0 = conditional) {
response <- object@responses
if (length(response@variables) == 1 && inherits(response@variables[[1]],
"Surv"))
return(varimpsurv(object, mincriterion, conditional,
threshold, nperm, OOB, pre1.0_0))
input <- object@data@get("input")
xnames <- colnames(input)
inp <- initVariableFrame(input, trafo = NULL)
y <- object@responses@variables[[1]]
if (length(response@variables) != 1)
stop("cannot compute variable importance measure for multivariate response")
if (conditional || pre1.0_0) {
if (!all(complete.cases(inp@variables)))
stop("cannot compute variable importance measure with missing values")
}
CLASS <- all(response@is_nominal)
ORDERED <- all(response@is_ordinal)
if (CLASS) {
error <- function(x, oob) mean((levels(y)[sapply(x, which.max)] !=
y)[oob])
} else {
if (ORDERED) {
error <- function(x, oob) mean((sapply(x, which.max) !=
y)[oob])
} else {
error <- function(x, oob) mean((unlist(x) - y)[oob]^2)
}
}
w <- object@initweights
if (max(abs(w - 1)) > sqrt(.Machine$double.eps))
warning(sQuote("varimp"), " with non-unity weights might give misleading results")
perror <- matrix(0, nrow = nperm * length(object@ensemble),
ncol = length(xnames))
colnames(perror) <- xnames
for (b in 1:length(object@ensemble)) {
tree <- object@ensemble[[b]]
if (OOB) {
oob <- object@weights[[b]] == 0
} else {
oob <- rep(TRUE, length(y))
}
p <- .Call("R_predict", tree, inp, mincriterion, -1L,
PACKAGE = "party")
eoob <- error(p, oob)
for (j in unique(party:::varIDs(tree))) {
for (per in 1:nperm) {
if (conditional || pre1.0_0) {
tmp <- inp
ccl <- create_cond_list(conditional, threshold,
xnames[j], input)
if (is.null(ccl)) {
perm <- sample(which(oob))
} else {
perm <- conditional_perm(ccl, xnames, input,
tree, oob)
}
tmp@variables[[j]][which(oob)] <- tmp@variables[[j]][perm]
p <- .Call("R_predict", tree, tmp, mincriterion,
-1L, PACKAGE = "party")
} else {
p <- .Call("R_predict", tree, inp, mincriterion,
as.integer(j), PACKAGE = "party")
}
perror[(per + (b - 1) * nperm), j] <- (error(p,
oob) - eoob)
}
}
}
perror <- as.data.frame(perror)
return(list(MeanDecreaseAccuracy = colMeans(perror), VIMcTrees=perror))
}
VIMcTrees
is a matrix with a number of rows equal to the number of forest trees and with a column for each explanatory variable. The (i,j) element of this matrix is the VI of the j-th variable in the i-th tree.
varimp_ctrees(y)$VIMcTrees
nativeSpeaker age shoeSize
1 4.853855 30.06969 52.271824
2 15.740311 70.55825 5.409772
3 17.022082 113.86020 0.000000
4 22.003119 19.62134 50.634286
5 6.070659 28.58817 47.049866
6 16.508634 105.50321 2.302387
7 11.487349 31.80002 46.147677
8 19.250631 27.78282 43.589832
9 19.669478 98.73722 0.483079
10 11.748669 85.95768 5.812538