I am trying to calculate a distance matrix for a long list of locations identified by Latitude & Longitude using the Haversine formula that takes two tuples of coordinate pairs to produce the distance:
def haversine(point1, point2, miles=False):
""" Calculate the great-circle distance bewteen two points on the Earth surface.
:input: two 2-tuples, containing the latitude and longitude of each point
in decimal degrees.
Example: haversine((45.7597, 4.8422), (48.8567, 2.3508))
:output: Returns the distance bewteen the two points.
The default unit is kilometers. Miles can be returned
if the ``miles`` parameter is set to True.
"""
I can calculate the distance between all points using a nested for loop as follows:
data.head()
id coordinates
0 1 (16.3457688674, 6.30354512503)
1 2 (12.494749307, 28.6263955635)
2 3 (27.794615136, 60.0324947881)
3 4 (44.4269923769, 110.114216113)
4 5 (-69.8540884125, 87.9468778773)
using a simple function:
distance = {}
def haver_loop(df):
for i, point1 in df.iterrows():
distance[i] = []
for j, point2 in df.iterrows():
distance[i].append(haversine(point1.coordinates, point2.coordinates))
return pd.DataFrame.from_dict(distance, orient='index')
But this takes quite a while given the time complexity, running at around 20s for 500 points and I have a much longer list. This has me looking at vectorization, and I've come across numpy.vectorize
((docs), but can't figure out how to apply it in this context.
You would provide your function as an argument to np.vectorize()
, and could then use it as an argument to pandas.groupby.apply
as illustrated below:
haver_vec = np.vectorize(haversine, otypes=[np.int16])
distance = df.groupby('id').apply(lambda x: pd.Series(haver_vec(df.coordinates, x.coordinates)))
For instance, with sample data as follows:
length = 500
df = pd.DataFrame({'id':np.arange(length), 'coordinates':tuple(zip(np.random.uniform(-90, 90, length), np.random.uniform(-180, 180, length)))})
compare for 500 points:
def haver_vect(data):
distance = data.groupby('id').apply(lambda x: pd.Series(haver_vec(data.coordinates, x.coordinates)))
return distance
%timeit haver_loop(df): 1 loops, best of 3: 35.5 s per loop
%timeit haver_vect(df): 1 loops, best of 3: 593 ms per loop