Search code examples
rmatrixgradientnls

Error in nls singular gradient matrix at initial parameter estimates


I'm trying to fit a rectangular hyperbola using the nls in R.

curve.nlslrc = nls(photolrc ~ (1/(2*theta))*(AQY*PARlrc+Am-sqrt((AQY*PARlrc+Am)^2-4*AQY*theta*Am*PARlrc))-Rd, start=list(Am=(max(photolrc)-min(photolrc)),AQY=0.05,Rd=-min(photolrc),theta=1))

And a wild message appears:

Error in nlsModel(formula, mf, start, wts) : 
  singular gradient matrix at initial parameter estimates

Any ideas on how to fix this?

Data:

PARlrc  photolrc
    50     -0.04
   100  1.130000
   150  0.580000
   200  0.850000
   250  1.370000
   300  1.370000
   350  1.230000
   400  2.040000
   450  1.670000
   500  1.790000
   550  1.820000
   600  1.768494
   650  2.083641
   700  1.998950
   750  2.399018
   800  2.289517
   850  2.223104
   900  2.329006
   950  2.700987
  1000  2.694792
  1050  2.684530
  1100  2.594925
  1150  2.662429
  1200  2.590890
  1250  3.043056
  1300  3.795076
  1350  4.003595
  1400  4.401325
  1450  4.786757
  1500  4.338971
  1550  4.701821
  1600  4.431703
  1650  4.392877
  1700  4.642945
  1750  4.429018
  1800  3.638166
  1850  2.879107

Solution

  • Try nlsLM:

    library(minpack.lm)
    
    curve.nlslrc = with(DF, 
      nlsLM(photolrc ~ 
              (1/(2*theta))*(AQY*PARlrc+Am-sqrt((AQY*PARlrc+Am)^2-4*AQY*theta*Am*PARlrc))-Rd, 
         start = list(Am=(max(photolrc)-min(photolrc)), AQY=0.05,  Rd=-min(photolrc), theta=1))
    )
    

    giving:

    > curve.nlslrc
    Nonlinear regression model
      model: photolrc ~ (1/(2 * theta)) * (AQY * PARlrc + Am - sqrt((AQY *     PARlrc + Am)^2 - 4 * AQY * theta * Am * PARlrc)) - Rd
       data: parent.frame()
           Am       AQY        Rd     theta 
     3.957527  0.002529 -0.340865  1.000022 
     residual sum-of-squares: 6.94
    
    Number of iterations to convergence: 35 
    Achieved convergence tolerance: 1.49e-08
    

    (continued after chart)

    screenshot

    Note 1: Note that an even simpler model with fewer parameters (3 vs. 4) has a lower residual sum of squares (6.7 vs. 6.9):

    fm.lm <- lm(photolrc ~ PARlrc, DF)
    fm2 <- nls(photolrc ~ pmin(a, b * PARlrc + c), DF,
      start = list(a = mean(DF$photolrc), b = coef(fm.lm)[2], c = 0))
    

    giuving:

    > fm2
    Nonlinear regression model
      model: photolrc ~ pmin(a, b * PARlrc + c)
       data: DF
           a        b        c 
    4.159377 0.002434 0.420329 
     residual sum-of-squares: 6.739
    
    Number of iterations to convergence: 5 
    Achieved convergence tolerance: 9.197e-09
    

    Note 2: This was used as DF:

    Lines <- "PARlrc photolrc
    50 -0.04
    100 1.130000
    150 0.580000
    200 0.850000
    250 1.370000
    300 1.370000
    350 1.230000
    400 2.040000
    450 1.670000
    500 1.790000
    550 1.820000
    600 1.768494
    650 2.083641
    700 1.998950
    750 2.399018
    800 2.289517
    850 2.223104
    900 2.329006
    950 2.700987
    1000 2.694792
    1050 2.684530
    1100 2.594925
    1150 2.662429
    1200 2.590890
    1250 3.043056
    1300 3.795076
    1350 4.003595
    1400 4.401325
    1450 4.786757
    1500 4.338971
    1550 4.701821
    1600 4.431703
    1650 4.392877
    1700 4.642945
    1750 4.429018
    1800 3.638166
    1850 2.879107"
    DF <- read.table(text = Lines, header = TRUE)