I have below json record in RethinkDB table.
[{
"pid": 12,
"sk": [
{
"sid": 30,
"et": 3
},
{
"sid": 22,
"et": 10
},
{
"sid": 30,
"et": 8
}
],
"wc": [
{
"wid": 7,
"et": 8
},
{
"wid": 3,
"et": 6
},
{
"wid": 9,
"et": 7
}
]
}]
Like this one, I have millions of rows in the table. What am trying to achieve is to filter this json based on input sets of {sid,et}
Am using below code in python (skObj is the input) ::
skObj=[{'sid': 1, 'et': 9},{'sid': 27, 'et': 6}]
cursor2=r.table('cube7').filter(lambda row: r.expr(skObj).set_difference(row['sk']).is_empty())['pid'].run(t)
cur_list2 = list(cursor2)
The Above query correctly filters my cube7 table in RethinkDB as per the input sets of sk. skObj can contain sets upto 10.
What I would like to see is for every input set
skObj=[{'sid': 22, 'et': 10},{'sid': 30, 'et': 8}]
I would like to filter the table with this condition:
(sid=22 & et>=10) and (sid=30 & et>=8)
But currently it is doing equals only like
(sid=22 & et=10) and (sid=30 & et=8)
How can I use greater than inside my lambda expression for et values for each set of (sid,et) ?
How can I create generic expression from below - this works with raw data
lambda x: (x['sid'] == 22) & (x['et'] >= 10)
So you want to get all the documents where the sk
array contains at least one document matching each predicate?
Does this do what you want?
r.table('cube7').filter(
lambda row: r.and_(r.args(r.expr(skObj).map(
lambda x: row['sk'].contains(
lambda y: (y['sid'] == x['sid']) & (y['et'] >= x['et'])
)
)))
)