I want to get an intersection of 4 indexes of type ordered_non_unique
the fastest possible way. Is such an multi_index
-intersection faster than a 4 times nested std::map
? Is there's a possibility to use something like an std::map().emplace().
Here's my code.
#include <iostream>
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/ordered_index.hpp>
using boost::multi_index_container;
using namespace boost::multi_index;
struct Kpt {
Kpt(float _x0, float _x1, float _y0, float _y1)
: x0_(_x0),x1_(_x1),y0_(_y0),y1_(_y1) {
}
friend std::ostream& operator<<(std::ostream & _os, Kpt const & _kpt) {
_os
<< "\nx0 " << _kpt.x0_ << ","
<< " y0 " << _kpt.y0_ << ","
<< " x1 " << _kpt.x1_ << ","
<< " y1 " << _kpt.y1_ << std::endl
;
return _os;
}
float x0_;
float x1_;
float y0_;
float y1_;
};
struct x0_{};
struct x1_{};
struct y0_{};
struct y1_{};
typedef multi_index_container <
Kpt
, indexed_by <
ordered_non_unique <
tag<x0_>,BOOST_MULTI_INDEX_MEMBER(Kpt,float,x0_)
>
, ordered_non_unique <
tag<x1_>,BOOST_MULTI_INDEX_MEMBER(Kpt,float,x1_)
>
, ordered_non_unique <
tag<y0_>,BOOST_MULTI_INDEX_MEMBER(Kpt,float,y0_)
>
, ordered_non_unique <
tag<y1_>,BOOST_MULTI_INDEX_MEMBER(Kpt,float,y1_)
>
>
> Kpts;
int main() {
Kpts kpts;
for (int i=0; i<1000000; ++i) {
if (i%10000==0) std::cout << "." << std::flush;
kpts.insert(Kpt(0.1,0.1,0.1,0.1));
}
}
OK, now I understand you'd like to search 4-dimensional points in the region [x0,x0+d]×[x1,x1+d]×[y0,y0+d]×[y1,y1+d]
, right?
Well, I'm afraid to say Boost.MultiIndex is not the right tool for that, as obtaining the intersection of ranges in indices #0, #1, #2, #3 can only be done by scanning one of the ranges (say #0) and manually verifying if the traversed points' remaining coordinates (x1, y0, y1)
lie within the area of interest (std::set_intersection
does not even apply here as it requires that compared ranges be sorted by the same criterion, which is not the case for our indices).
boost::geometry::index::rtree
or some similar spatial data structure are likely, as you point out, to be better suited for this job.