Search code examples
pythoncorrelationtheano

Circular Correlation in Theano


I'm trying to compute circular cross-correlation of two signals with Theano to use it in further calculation of loss that I would optimize over. But I'm not quite sure how to do that.

It is defined as following:

(f * g)[n] = sum_k f[k]g[k+n]
ccc[n] = \sum_k (f*g)[n-kN]
  • "periodic" summation or like "for each k-th component".

I could do an ordinary correlation and then perform periodic summation, but it's not quite clear how to do that (periodic summation) symbolically (using scan, probably?)

conv2d = T.signal.conv.conv2d

x = T.dmatrix()
y = T.dmatrix()
veclen = x.shape[1]

corr_expr = conv2d(x, y[:, ::-1], image_shape=(1, veclen), border_mode='full')

# circ_corr = T.sum([corr_expr[k::veclen] for k in T.arange(veclen)])

corr = theano.function([x, y], outputs=circ_corr)

corr( np.array([[2, 3, 5]]), np.array([[7, 11, 13]]) )

or use circular cross-correlation theorem and compute as a iFFT(FFT(x)*FFT(y)):

import theano.sandbox.fourier as dft
x = T.dmatrix()
y = T.dvector()
veclen = x.shape[1]

exp = T.real( 
        dft.ifft( 
            dft.fft(x, veclen, axis=1) 
            * dft.fft(y[::-1], y.shape[0], axis=1).reshape((1, -1)), 
            veclen, axis=1
        ) 
    )[:, ::-1]
f = theano.function([x, y], outputs=exp)

f(np.array([[2, 3, 5], [3, 4, 4], [5, 6, 7]]), np.array([7, 11, 13]) )

but in this case I can't actually compute a gradient because gradient for ifft (and all functions that has something to do with complex numbers in general, afaik) is not implemented yet, I guess (aborts with an error: Elemwise{real,no_inplace}.grad illegally returned an integer-valued variable. (Input index 0, dtype complex128))


Solution

  • Here's a working solution I came up with (definitely not optimal as soon as FFT is not used):

    def circular_crosscorelation(X, y):
        """ 
        Input:
            symbols for X [n, m]
            and y[m,]
    
        Returns: 
            symbol for circular cross corelation of each of row in X with 
            cc[n, m]
        """
        n, m = X.shape
        corr_expr = T.signal.conv.conv2d(X, y[::-1].reshape((1, -1)), image_shape=(1, m), border_mode='full')
        corr_len = corr_expr.shape[1]
        pad = m - corr_len%m
        v_padded = T.concatenate([corr_expr, T.zeros((n, pad))], axis=1)
        circ_corr_exp = T.sum(v_padded.reshape((n, v_padded.shape[1] / m, m)), axis=1)
        return circ_corr_exp[:, ::-1]
    
    X = T.dmatrix()
    y = T.dmatrix()
    cc = theano.function([X, y], circular_crosscorelation(X, y))
    print cc( np.array([[2, 3, 5], [4, 5, 6]]), np.array([[7, 11, 13]]) )
    

    returns

    [[  94.  108.  108.]
     [ 149.  157.  159.]]
    

    as expected.

    And can be analytically differentiated:

    score = T.sum(circ_corr_exp**2)
    grad = T.grad(score, x)
    g = theano.function([x, y], outputs=grad)
    print g( np.array([[2, 3, 5], [4, 5, 6]]), np.array([[7, 11, 13]]) )
    
    >> [[ 6332.  6388.  6500.]
    >>  [ 9554.  9610.  9666.]]
    

    here's also few more options (through direct circulant calculation) and time-comparation:

    def circulant_np(v):
        row = np.arange(len(v))
        col = -np.arange(len(v))
        idx = (row[:, np.newaxis] + col)%len(v)
        return v[idx]
    
    print circulant_np(np.array([1, 2, 3, 5]))
    
    def c_corr_np(a, b):
        return circulant_np(a).dot(b[::-1])
    
    def circulant_t(v):
        row = T.arange(v.shape[0])
        col = -T.arange(v.shape[0])
        idx = (row.reshape((-1, 1)) + col)%v.shape[0]
        return v[idx]
    
    def c_corr_t_f(a, b):
        """ 1d correlation using circulant matrix """
        return circulant_t(a).dot(b[::-1])
    
    a = T.dvector('a')
    b = T.dvector('b')
    c_corr_t = theano.function([a, b], c_corr_t_f(a, b))
    
    print c_corr_np(np.array([2, 3, 5]), np.array([7, 11, 13]))
    print c_corr_t(np.array([2, 3, 5]), np.array([7, 11, 13]))
    print c_corr( np.array([[2, 3, 5]]), np.array([[7, 11, 13]]) )
    
    %timeit c_corr_np(np.array([2, 3, 5]), np.array([7, 11, 13]))
    %timeit c_corr_t(np.array([2, 3, 5]), np.array([7, 11, 13]))
    %timeit c_corr( np.array([[2, 3, 5]]), np.array([[7, 11, 13]]) ) # = circular_crosscorelation
    

    which gives

    10000 loops, best of 3: 30.6 µs per loop
    10000 loops, best of 3: 132 µs per loop
    10000 loops, best of 3: 149 µs per loop
    

    and inverse cross-corr:

    def inverse_circular_crosscorelation(y):
        """ 
        Input:
            symbol for y[1, m]
    
        Returns: 
            symbol for y_inv s.t. 
            cc( y, y_inv ) = (1, 0 ... 0)
        """
    
        A = circulant_t(y.reshape((-1, )))
        b = T.concatenate([T.zeros((y.shape[1] - 1, )), T.ones((1, ))]).reshape((-1, 1))
        return T.nlinalg.matrix_inverse(A).dot(b).reshape((1, -1))[:, ::-1]