I have below json in RethinkDB table
[{"pid": 0,
"sk": [
{
"sid": 30,
"et": 3
},
{
"sid": 22,
"et": 10
},
{
"sid": 30,
"et": 10
}
],
"wc": [
{
"wid": 29,
"et": 8
},
{
"wid": 30,
"et": 2
},
],
"dom": [
{
"did": 7,
"et": 2
},
{
"did": 6,
"et": 3
}
],
"ex": 17,
"av": 12,
"lc": "FRA"
}
Like this there are several thousands of rows in RethinkDB table.
My Objective is to search the data of sk, wc
For example: Input could be
"sk":[{"sid":21,"et":5},{"sid":21,"et":5}] Once filtered on above condition, the resultant dataset should again be filtered for wc field "wc":[{"wid":1,"et":7},{"wid":4,"et":5},{"wid":0,"et":7}]
I need the output records which were contained in the given input like in the table for example, sk:[{sid:2,et:8},{sid:3,et:6},{sid:3,et:7},{sid:4,et:9}] should be shown in output dataset if the input fields are below [{sid:3,et:7},{sid:4,et:9}]
I used below query when I have {sid:et} in one tuple:
r.db('testdb').table('f_tab').
filter(
{
"sk": [{"0":"8"},{"1":"5"},{"8":"5"},{"3":"8"},{"12":"4"}]
}).filter(
{
"wc": [{"0":"7"},{"7":"9"},{"2":"6"},{"8":"4"},{"4":"7"}]
}).getField('pid')
Now I have split the sid and et values for better management in server side code
Tried using r.row inside filter, but it doesn't work How can I filter based on my requirement in python ?
What is the best approach for performing nested fields search this way in perspective of performance ?
Does this do what you want?
r.table('f_tab').filter(
lambda row: r.expr([{'sid': 21, 'et': 5}, ...]).set_difference(row['sk']).is_empty()
).filter(
lambda row: r.expr([{'wid': 22, 'et': 6}, ...]).set_difference(row['wc']).is_empty()
)['pid']