I have this runge kutta code. However, one mentioned my approach is wrong. And I couldn't really understand why from him, so anyone here, who could give a hint on why this way is wrong?
Vector3d r = P.GetAcceleration();
Vector3d s = P.GetAcceleration() + 0.5*m_dDeltaT*r;
Vector3d t = P.GetAcceleration() + 0.5*m_dDeltaT*s;
Vector3d u = P.GetAcceleration() + m_dDeltaT*t;
P.Velocity += m_dDeltaT * (r + 2.0 * (s + t) + u) / 6.0);
====EDIT====
Vector3d are storing the coordinates, x, y, z.
The GetAcceleration returns the acceleration for each x, y, and z.
You have some acceleration function
a(p,q) where p=(x,y,z) and q=(vx,vy,vz)
Your order 1 system that can be solved via RK4 is
dotp = q
dotq = a(p,q)
The stages of the RK method involve an offset of the state vector(s)
k1p = q
k1q = a(p,q)
p1 = p + 0.5*dt*k1p
q1 = q + 0.5*dt*k1q
k2p = q1
k2q = a(p1,q1)
p2 = p + 0.5*dt*k2p
q2 = p + 0.5*dt*k2q
k3p = q2
k3q = a(p2,q2)
etc. You can either adjust the state vectors of the point P
for each step, saving the original coordinates, or use a temporary copy of P
to compute k2, k3, k4
.